
1

Filippo Castiglione
Istituto Applicazioni del Calcolo (IAC) “M. Picone”,

National Research Council (CNR), Roma, Italy

Large-scale agent-based models
perspectives and requirements

IMA "Hot Topics" Workshop:
Agent Based Modeling and Simulation

Minneapolis, USA
November 3-6, 2003

2

Overview

I. From spin models to ABM

II. Optimization requirements
0 Immune System Simulation
0 Stock Market Simulation

3

Large scale simulations using state-of-art HPC techniques and
parallel processing have been “limited” to classic applications like
fluid-dynamics, materials science or meteorology.

Floating point
simulations:

(i) Discretize the model-eqs;
(ii) Do computer simulation;
(iii) Double check w. r. t. continuous eqs.

Efficient algorithms, optimized codes and compilers

4

ODE, PDE describe well the macroscopic properties

but

• Difficult to explain the origin (micro)

• Don’t handle well discontinous systems

• Don’t handle well heterogenity in the population

5

The rules governing the micro-behaviour of the entities
are mostly unknown

Complex systems (in biology or finance) are composed
by many heterogeneous elements which interact each
other

à Bottom-Up simulations (it’s a computational paradigm)

What is available is the behaviour at macro level (empirical
observations, clinical data, financial records)

6

Ising-like models

Ernst Ising (1925):
• model for magnetization (also for liquid-gas transition)
• spin up (+1) or down (-1)

John von Neumann (1966):
• self-reproducible automata

John Conway (Gardner, 1970):
• Game of LIFE Cellular Automata
• cells dead (0) or alive (1)
• model for excitable medium (Belousov-Zhabotinskii reaction,
Greenberg-Hasting model)

Frish, Hasslacher, Pomeau (1986):
• model for fluid dynamics
• 2D Lattice Gas (FHP): 6 velocities

7

Yes/No?One, two, three dimensions
(also more)

Discrete lattice of
cells

Synchronism

Interactions

Heterogenity

Internal state

No. Asyncrony comes from
eligible states in the state-transition
rule.

Yes (parallel update
dynamics)

Long-range interactionUsually with the
neighbourhood (local
interactions)

YesUsually not

Complex representation (many
states from an enumerable set and
even more)

Simple representation (0,1, …,
N, N small)

Agent Based ModelsIsing-like models

8

Optimized codes for Ising-like models (e.g. multispin
coding, Swendsen and Wang’s cluster update, …)

• Serialize computation/simulation
• Ad-hoc solutions

There is no standard for ABM high-performance
simulations

Ising-models are statistical mechanics models, i.e.
• very simple interactions
• very large number of microscopic entities

9

Lymphoid System
(organs of the Immune System)

Bone Marrow
Thymus
Lymph Nodes
Spleen

Adenoids
Tonsils
Peyer’s Patch
Appendix

Intestine, skin, etc.

Primary = development

Secondary = Ag encounter

Tertiary = effectors

10

T

B, MA, DC, …

Th, CTL

Self-peptides

Thymus
Thymocytes

Bone marrow
All cells

Simulation space
(secondary organ)

B

Th

MA

DC

Ag

Antigens
non-self

Virus, bacteria, …

11

® Molecules are represented by binary strings
(BCR, Igs, TCR, antigens, immunocomplexes)

lymphocyte

receptor

MHC I

Epitope

Peptide

• l =24 is the maximum bit-string length reached up to date

� → 224 ≅ 1.6 ⋅ 107

True potential repertoire
Ø BRC 1011 (~236)
Ø TCR 1016 (~253)

12

• Cellular agents are not striving for an overall goal

The model is useful for:
• What-if scenarious
• Virtual experiments, i.e. optimize protocols for
ü antiretroviral HIV threrapy (HART)
ü tumor vaccines

• Immune system goals:
ü recognition
ü response
ü memory

• No centralized control

Viral infection

13

Financial Markets
Agents trading with different strategies for a set of N assets

Fundamentalists:
consider a “right” price of an asset
Noisy:
behave randomly
Technical traders:
look at charts

At each time step the agents decide whether to trade or to stay inactive

• Active agents follow different decision paths (depending on their trading strategy)

• may take different positions with respect to each stock in the market.

14

• Traders are displaced on a 2D-lattice (space represents the social /
communication network)

• They diffuse to next-neighbors sites at each time step spreading their
preference

• Traders on the same lattice belong to the same “group” of investors and
get influenced by components of the same group

• Leadership: Few agents have a greater influence than others

15

Book of Orders (the “interaction”)

Orders are stored according to type (buy or sell), price and time

A transaction occurs whenever the cheapest price among the sell list matches
the most expensive offer in the other list

• Traders choose randomly the kind of order for a random subset of assets
• Market orders
• Limit Orders

• Orders are matched in the book of orders (one for each asset)

16

What these models have in common?

The architecture

17

The complex perception/behaviour of the entities corresponds to precise
state-changes upon interaction.

Every agent can be represented as a Stochastic Finite State Machine
(SFSM) which processes information and changes its state according to
the result of the interactions with other entities, or with external fields.

There is a very limited number of
floating point operations. Most of
the data structures are a
combination of integers and
pointers (i.e., the numerical
stability is guaranteed)

18

Agent’s trading strategies

Fundamentalists
buy if pt = ft
otherwise sell

Noisy
buy randomly (probability 1/2)

Chartists
sell if MAt(h) > p+

buy if MAt(h) < p-

otherwise do nothing

19

Dynamic memory allocation

agents (cells, molecules, traders on the market etc) are represented as a collection
of information or attributes.

20

/* T helper lymphocyte */
typedef struct tagTHblock {

int x; /* lattice position */
int CD4; /* T cell receptor, TCR */
int MHCIpep; /* MHCI-peptide complex */
int NVirus; /* viral load */
int Age; /* age of the cell in units of 1/3 day */
int tau; /* determines the death rate */
int Nduplications; /* number of times entering mitotic phase */
unsigned short dupStep; /* duplication phase */
unsigned short Flags; /* state-flags */
AGCOMPBLOCK *AGIdI; /* infecting HIV structure */
struct tagTHblock *Next; /* next block */

} THBLOCK;

The information is organized in blocks of variables, one block for each cell.

21

typedef struct tagAgentblock {
int aclass; /* agents type identifier */
int atid; /* type of moving average */
int strategy[MAX_NUM_ASSETS]; /* buy-sell decision */
int nstocks[MAX_NUM_ASSETS]; /* num. of possessed stocks */
int ordertime[MAX_NUM_ASSETS]; /* time an order may be outstanding

ordertime=0 means market order
>0 means limit order
<0 means stop order */

double orderprice[MAX_NUM_ASSETS]; /* orderprice:
ordertime>0 means limit price,
ordertime<0 means stop price,
no meaning if ordertime==0 */

double money; /* liquidity: available money
not blocked in any order */

double iwealth; /* initial wealth */
double invested[MAX_NUM_ASSETS]; /* money invested in stocks */
double activity; /* probability to trade */
void (*policy[NSTRATEGIES])(); /* strategy function */
struct tagAgentblock *next;

} AGENTBLOCK;

The lists are dynamic: existing agents run out of money and new agents enter
the market during the simulation

Trader’s data structure

22

The blocks are linked in forward lists, one for each class of agent.
One list for each lattice site

The lists are initialized at startup time and are managed dynamically at run time

23

10110100
11110101

0.115
0.4

00100100
11101001

0.125
0.4

11110100
11101111

0.075
0.05

10010100
11100001

0.015
0.75

1203 2 440 220391

AG-COMPBLOCKS

120 3203 10123 11
ANTIGEN

B-CELLS

AG-LISTS[x]

24

In a real market there are hundreds of different stocks and hundreds of millions of
transactions every day. A quasi-realistic simulation requires a significant amount of
computing time for the management of the book-of-orders.

The buy-orders have to be sorted from the highest to the lowest order price
whereas the sell-orders must be sorted in the reverse order; for each stock.

Since most of the orders have a limited life-time (in the real word, up to few days)
it is necessary to check if an order is expired, which means a periodic scanning of
the lists.

M 400 101.25

BUY

Type Shares Price

L 10 101.12

L 25 100.85

SELL

Type Shares Price

M 14 99.15

M 340 100.15

M 3 102.00

25

What do we need?

1. Optimized C/C++ code

2. Special libraries for special functions (e.g., list permutation,
optimized insertion/deletion of nodes, list lookups)

3. Compiler directives for optimized list processing (cache-
friendly)

26

Parallelization of the Immune System simulator

The lymphonode is mapped on a two-dimension grid LX x LY with periodic boundary
conditions in both directions

Each task of a parallel run is in charge of a subset of the total number of agents

PE 0

PE 1

PE 2

PE 3

lattice

27

Each Processing Elements (PEs) works on a subset of the lattice sites. The
lists that describe the entities are “local” to the PEs. This means that there is
no single list split among the processors but as many independent lists as the
number of PEs in use.

28

The problem is not “embarrassingly parallel” for two features of the simulation.

• The diffusion phase: If an entity leaves the “domain” of a PE to migrate to one
of the “nearest neighbor PEs”, it is necessary:

• to delete the entity from the original list
• to pack all its attributes in a message
• to send the message to PE_d, that is the destination PE.
The destination PE
• unpacks the message
• inserts the attributes of the incoming entity in a new element that

becomes the head of the corresponding list

• The output phase: a master has to collect global data

29

Communication scheme

Numbers represent the
source/target for the
mpi_irecv/mpi_send, of the
point-to-point communication
operations.

30

1. Parallel constructs to handle generic data
structure for the agents for message-passing
operations

2. Parallel construct for list-to-list interactions

3. User friendly parallel directives for mutual
exclusive access to global data structures

What do we need?

31

Conclusions

High performant ABMs require:

Compilers: we need special constructs to define
and manage agents

– Smart data structures
– Smart list processing

• Parallel computing
– Minimize Message Passing
– Use Shared Memory Machines

32

Thank you

Questions?

This work has been done in collaboration with M. Bernaschi, IAC-CNR

