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Introduction to Dynamic Systems 

What is a dynamic system? 

A dynamic system is a set of functions (rules, equations) that 
specify how variables change over time. 



First example ... 
Alice's height diminishes by half every minute... 

Second example ...  
xnew = xold + yold 

ynew= xold 

The second example illustrates a system with two variables, 
x and y. Variable x is changed by taking its old value and 
adding the current value of y. And y is changed by becoming 
x's old value. Silly system? Perhaps. We're just showing that 
a dynamic system is any well-specified set of rules.  

Here are some important Distinctions: 

• variables (dimensions) vs. parameters 
• discrete vs. continuous variables 
• stochastic vs. deterministic dynamic systems 

 
How they differ: 

• Variables change in time, parameters do not. 
• Discrete variables are restricted to integer values, 

continuous variable are not. 
• Stochastic systems are one-to-many; deterministic 

systems are one-to-one 
 
This last distinction will be made clearer as we go 
along ...  

Terms 

The current state of a dynamic system is specified by the 
current value of its variables, x, y, z, ... 
The process of calculating the new state of a discrete system 
is called iteration. 

 
To evaluate how a system behaves, we need the functions, 
parameter values and initial conditions or starting state. 
To illustrate...Consider a classic learning theory, the alpha 
model, which specifies how qn, the probability of making an 
error on trial n, changed from one trial to the next 
qn+1 = ß qn The new error probability is diminished by ß 
(which is less than 1, greater than 0). For example, let the the 
probability of an error on trial 1 equal to 1, and ß equal .9. 
Now we can calculate the dynamics by iterating the function, 



and plot the 
results.   
 
q1 = 1  
q2 = ßq1 = 
(.9)(1) = .9  
q3 = (.9)q2 = 
(.9)(.9) = .81  
etc. ... 

 

Error probabilities for the alpha model, assuming q1=1, ß 
=.9. This "learning curve" is referred to as a time series.  

So far, we have some new ideas, but much is old ...  

What's not new 

Dynamic Systems 
Certainly the idea that systems change in time is not new. 
Nor is the idea that the changes are probabilistic.  

What's new 

Deterministic nonlinear dynamic systems. 

As we will see, these systems give us: 

• A new meaning to the term unpredictable.  
• A different attitude toward the concept of variability.  
• Some new tools for exploring time series data and for 

modeling such behavior.  
• And, some argue, a new paradigm.  

This last point is not pursued here. 

 

Nonlinear Dynamic Systems  

 

Nonlinear functions 



What's a linear function? 

Well, gee Mikey, it's one that can be written in the form of a 
straight line. Remember the formula ... 
y = mx + b 
where m is the slope and b is the y-intercept?  

What's a nonlinear function? 

What makes a dynamic system nonlinear .... 
is whether the function specifying the change is nonlinear. 
Not whether its behavior is nonlinear. 
And y is a nonlinear function of x if x is multiplied by 
another (non-constant) variable, or multiplied by itself (i. e., 
raised to some power). 
We illustrate nonlinear systems using ...  

 

Logistic Difference Equation 

... a model often used to introduce chaos. The Logistic 
Difference Equation, or Logistic Map, though simple, 
displays the major chaotic concepts.  

Growth model 

We start, generally, with a model of growth. 

xnew = r xold 

We prefer to write this in terms of n:  

 
xn+1 = r xn. 



This says x changes from one time period, n, to the next, 
n+1, according to r. If r is larger than one, x gets larger with 
successive iterations If r is less than one, x diminishes. (In 
the "Alice" example at the beginning, r is .5).  
Let's set r to be larger than one... 
  
  
We start, year 1 (n=1), 
with a population of 16 
[x1=16], and since 
r=1.5, each year x is 
increased by 50%. So 
years 2, 3, 4, 5, ... have 
magnitudes 24, 36, 54, 
... 
Our population is 
growing exponentially. 
By year 25 we have 
over a quarter million. 

 
Iterations of Growth model with r = 1.5  

So far, notice, we have a linear model that produces 
unlimited growth.  

Limited Growth model - Logistic Map.  

The Logistic Map prevents unlimited growth by inhibiting 
growth whenever it achieves a high level. This is achieved 
with an additional term, [1 - xn].  
The growth measure (x) is also rescaled so that the maximum 
value x can achieve is transformed to 1. (So if the maximum 
size is 25 million, say, x is expressed as a proportion of that 
maximum.) 
Our new model is 

xn+1 = r xn [1 - xn] 

[r between 0 and 4.] 
The [1-xn] term serves to inhibit growth because as x 
approaches 1, [1-xn] 
approaches 0. 

  
 



Plotting xn+1 vs. xn, we see we have a nonlinear relation. 
Limited growth (Verhulst) model. Xn+1 vs. xn, r = 3. 

 
We have to iterate this function to see how it will behave ...  
Suppose r=3, 
and x1=.1   
  
x2 = rx1[1-x1] = 
3(.1)(.9) = .27  
x3= r x2[1-x2]= 
3(.27)(.73) = 
.591  
x4= r x3[1-3]= 
3(.591)(.409) = 
.725 

 

Behavior of the Logistic map for r = 3, x1 = .1, iterated to 
give x2, x3, and x4 

It turns out that the logistic map is a very different animal, 
depending on its control parameter r. To see this, we next 
examine the time series produced at different values of r, 
starting near 0 and ending at r=4. Along the way we see very 
different results, revealing and introducing major features of 
a chaotic system.  

When r is less than 1 

 

Behavior of the Logistic map for r=.25, .50, and .75. In all 
cases x1=.5.  



The same fates awaits any starting value. So long as r is less 
than 1, x goes toward 0. This illustrates a one-point 
attractor.  

When r is between 1 and 3 

 

Behavior of the Logistic map for r=1.25, 2.00, and 2.75. In 
all cases x1=.5.  

Now, regardless, of the starting value, we have non-zero one-
point attractors.  

When r is larger than 3 

 

Behavior of the Logistic map for r=3.2.  

Moving just beyond r=3, the system settles down to 
alternating between two points. We have a two-point 
attractor. We have illustrated a bifurcation, or period 



doubling, 

 

Behavior of the Logistic map for r= 3.54. Four-point 
attractor  

Another bifurcation. The concept: an N-point attractor. 

 

Chaotic behavior of the Logistic map at r= 3.99.  

So, what is an attractor? Whatever the system "settles down 
to".  
Here is a very important concept from nonlinear dynamics: A 
system eventually "settles down". But what it settles down to, 
its attractor, need not have 'stability'; it can be very 'strange'.  

Bifurcation Diagram 

So, again, what is a bifurcation? A bifucation is a period-
doubling, a change from an N-point attractor to a 2N-point 
attractor, which occurs when the control parameter is 



changed. 
A Bifurcation Diagram is a visual summary of the 
succession of period-doubling produced as r increases. The 
next figure shows the bifurcation diagram of the logistic 
map, r along the x-axis. For each value of r the system is first 
allowed to settle down and then the successive values of x 
are plotted for a few hundred iterations.  

 
Bifurcation Diagram r between 0 and 4 

We see that for r less than one, all the points are plotted at 
zero. Zero is the one point attractor for r less than one. For r 
between 1 and 3, we still have one-point attractors, but the 
'attracted' value of x increases as r increases, at least to r=3. 
Bifurcations occur at r=3, r=3.45, 3.54, 3.564, 3.569 
(approximately), etc., until just beyond 3.57, where the 
system is chaotic.  
However, the system is not chaotic for all values of r greater 
than 3.57.  
Let's zoom in a bit.  

 
Bifurcation Diagram r between 3.4 and 4 



Notice that at several values of r, greater than 3.57, a small 
number of x=values are visited. These regions produce the 
'white space' in the diagram. Look closely at r=3.83 and you 
will see a three-point attractor. 
In fact, between 3.57 and 4 there is a rich interleaving of 
chaos and order. A small change in r can make a stable 
system chaotic, and vice versa. 
 

Sensitivity to initial conditions 

Another important feature emerges in the chaotic region ... 
To see it, we set r=3.99 and begin at x1=.3. The next graph 
shows the time series for 48 iterations of the logistic map.  

 
Time series for Logistic map r=3.99, x1=.3, 48 iterations. 

Now, suppose we alter the starting point a bit. The next 
figure compares the time series for x1=.3 (in black) with that 
for x1=.301 (in blue).  

 
Two time series for r=3.99, x1=.3 compared to x1=.301 



The two time series stay close together for about 10 
iterations. But after that, they are pretty much on their own. 
Let's try starting closer together. We next compare starting at 
.3 with starting at .3000001...  

 
Two time series for r=3.99, x1=.3 compared to x1=.3000001 
This time they stay close for a longer time, but after 24 
iterations they diverge. To see just how independent they 
become, the next figure provides scatterplots for the two 
series before and after 24 iterations.  

 
Scatterplots of series starting at .3 vs. series starting at 

.3000001.  
The first 24 cycles on the left, next 24 on the right. 

 
The correlation after 24 iterations (right side), is essentially 
zero. Unreliability has replaced reliability. 

We have illustrated here one of the symptoms of chaos. A 
chaotic system is one for which the distance between two 
trajectories from nearby points in its state space diverge over 
time. The magnitude of the divergence increases 
exponentially in a chaotic system. 



So what? Well, it means that a chaotic system, even one 
determined by a simple rule, is in principle unpredictable. 
Say what? It is unpredictable, "in principle" because in order 
to predict its behavior into the future we must know its 
currrent value precisely. We have here an example where a 
slight difference, in the sixth decimal place, resulted in 
prediction failure after 24 iterations. And six decimal places 
far exceeds the kind of measuring accuracy we typically 
achieve with natural biological systems. 

Symptoms of Chaos 

We are beginning to sharpen our definition of a chaotic 
system. First of all, it is a deterministic system. If we observe 
behavior that we suspect to be the product of a chaotic 
system, it will also be 

difficult to distinguish from random behavior 
sensitive to initial conditions 

Note well: Neither of these symptoms, on their own, are 
sufficient to identify chaos.  

Note on technical vs. metaphorical 
uses of terms: 

Students of chaotic systems have begun to use the (originally 
mathematical) terms in a "metaphorical" way. For example, 
'bifurcation', defined here as a period doubling has come to 
be used to refer to any qualititave change. Even the term 
'chaos', has become synomous, for some, with 'overwhelming 
anxiety'.  

Metaphors enrich our understanding, and have helped extend 
nonlinear thinking into new areas. On the other hand, it is 
important that we are aware of the technical/metaphorical 
difference. 

Two- and Three-Dimension Systems 

First we practice the distinction between variables 
(dimensions) and parameters  

Consider again the Logistic map 



xn+1 = r xn[1- xn]  

Multiply the right side out  

xn+1= r xn - r xn
2,  

and replace the two r's with separate parameters, a and b,  

xn+1= a xn - b xn
2.  

Now, separate parameters, a and b, govern growth and 
suppression, but we still have only one variable, x. 

When we have a system with two or more variables,  

• its current state is the current values of its variables, 
and is  

• treated as a point in phase (state) space, and  
• we refer to its trajectory or orbit in time.  

Predator-prey system 

This is a two-dimensional dynamic system in which two 
variables grow, but one grows at the expense of the other. 
The number of predators is represented by y, the number of 
prey by x. 

We plot next the phase space of the system, which is a two-
dimension plot of the 
possible states of the 
system. 

 
 
 

A = Too many predators. 
B = Too few prey. 

C = Few predator and 
prey; prey can grow. 

D= Few predators, ample 
prey. 

The phase-space of the predator-prey system.  

Four states are shown. At Point A there are a large number 
of predators and a large number of prey. Drawn from point A 
is an arrow, or vector, showing how the system would 



change from that point. Many prey would be eaten, to the 
benefit of the predator. The arrow from point A, therefore, 
points in the direction of a smaller value of x and a larger 
value of y. 

At Point B there are many predators but few prey. The 
vector shows that both decrease; the predators because there 
are too few prey, the prey because the number of predators is 
still to the prey's disadvantage. At Point C, since there are a 
small number of predators the number of prey can increase, 
but there are still too few prey to sustain the predator 
population. Finally, at point D, having many prey is 
advantageous to the predators, but the number of prey is still 
too small to inhibit prey growth, so their numbers increase. 
The full trajectory (somewhat idealized) is shown next. 

 

The phase-space of the predator-prey system.  

An attractor that forms a loop like this is called a limit cycle. 
However, in this case the system doeasn't start outside the 
loop and move into it as a final attractor. In this system any 
starting state is already in the final loop. This is shown in the 
next figure, which shows loops from four different starting 
states.  



 

Phase-portrait of the predator-prey system, showing the 
influence of starting state.  

Points 1-4 start with about the same number of prey but with 
different numbers of predators. 

Let's look at this system over time, that is, as two time 
series.  

 

The time series of the predator-prey system.  

This figures shows how the two variables oscillate, out of 
phase.  

Continuous Functions and Differential Equations  

• Changes in discrete variables are expressed with 
difference equations, such as the logistic map.  

• Changes in continuous variables are expressed with 
differential equations  



For example, the Predator-prey system is typically presented 
as a set of two differential equations: 

dx/dt = (a-by)x 
dy/dt = (cx-d)y 

Types of two-dimensional interactions 

Other types of two-dimensional interactions are possible, as 
nicely categorized by van Geert (1991).  

• mutually supportive - the larger one gets, the faster 
the other grows  

• mutually competitive - each negatively affects the 
other  

• supportive-competitive - as in Predator-prey  

The Buckling column system 

Abraham, Abraham, & Shaw (1990) used the Buckling 
Column system to discuss psychological phenomena that 
exhibit oscillations (for example, mood swings, states of 
consciousness, attitude changes). The model is a single, 
flexible, column that supports a mass within a horizontally 
constrained space. If the mass of the object is sufficiently 
heavy, the column will "give", or buckle. There are two 
dimensions, x representing the sideways displacement of the 
column, and y the velocity of its movement. 

Shown next are two situations, differing in the magnitude of 
the mass.  

 

The buckling column model (Abraham, Abraham, & Shaw, 
1990).  

The mass on the left is larger than the mass on the right.  



What are the dynamics? The column is elastic, so an initial 
give is followed by a springy return and bouncing 
(oscillations). If there is resistance (friction), the bouncing 
will diminish and the mass will come to rest. The equations 
are given for completeness only: 
dx/dt = y 
dy/dt = (1 - m)(ax3 + b + cy) 

The parameters m and c represent mass and friction 
respectively. If there is friction (c>0), and mass is small, the 
column eventually returns to the upright position (x=0, y=0), 
illustrated next with two trajectories. 

 

Phase portrait of the buckling column model.  

With a heavy mass, the column comes to rest in one of two 
positions (two-point attractor), again illustrated with two 

trajectories.  

Phase portrait of the buckling column model.  

Starting at point A, the system comes to rest buckled slightly 
to the right, starting at B ends up buckled to the left. Now we 
can introduce another major concept...  

Basins of attraction 

With sufficient mass, the buckling column can end up in one 
of two states, buckled to the left or to the right. What 



determines which is its fate? For a given set of parameter 
values, the fate is determined entirely by where it starts, the 
initial values of x and y. In fact, each point in phase space 
can be classified according to its attractor. The set of points 
associated with a given attractor is called that attractors' 
basin of attraction. For the two-point attractor illustrated 
here, there are two basins of attraction. These are shown in 
the next figure, which has the phase space shaded according 
to attractor. 

 

The basins of attraction for the buckling column system. 
Reproduced from Abraham et al (1990).  

The basin of attraction for the positive attractor (the one on 
the right) are shaded. The basin of attraction for the other 
attractor is unshaded in the figure. The term seperatrix is 
used to refer to the boundary between basins of attraction.  

Questions to ponder 

Is the buckling column system a chaotic system? Why (not)?  

Three-dimensional Dynamic Systems 

The Lorenz System 

Lorenz's model of atmospheric dynamics is a classic in the 
chaos literature. The model nicely illustrates a three-
dimensional system. 



dx/dt = a(y-x) 
dy/dt = x(b-z) - y 
dz/dt = xy-cz 

There are three variables reflecting temperature differences 
and air movement, but the details are irrelevant to us. We are 
interested in the trajectories of the system in its phase space 
for a=10, b=28, c=8/3. Here we plot part of a trajectory 

starting from (5,5,5).  

The Lorenz system. Only a portion of one trajectory is 
shown.  

Although the figure suggests that a trajectory may intersect 
with earlier passes, in fact it never does. Although not 
demonstrated here, the Lorenz system shows sensitivity to 
initial conditions. This is chaos, the first strange attractor, 
and it has become the icon for chaos.  

Beasts in Phase space - Limit Points 

There are three kinds of limit points.  

• Attractors - where the system 'settles down' to.  
• Repellors - a point the system moves away from.  
• Saddle points - attractor from some regions, repellor 

to others.  

Examples 



• Attractors - we've seen many  
• Repellors - the value 0 in the Logistic Map  
• Saddle points - the point (0,0) in the Buckling 

Column  

Fractals and the Fractal Dimension 

 

Mandelbrot and Nature 

"Clouds are not spheres, mountains are not cones, 
coastlines are not circles, and bark is not smooth, nor 
does lightning travel in a straight line."(Mandelbrot, 
1983). 

The Concept of Dimension 

So far we have used "dimension" in two senses:  

• The three dimensions of Euclidean space (D=1,2,3)  
• The number of variables in a dynamic system  

Fractals, which are irregular geometric objects, require a 
third meaning:  

The Hausdorff Dimension 

If we take an object residing in Euclidean dimension D and 
reduce its linear size by 1/r in each spatial direction, its 
measure (length, area, or volume) would increase to N=rD 



times the original. This is pictured in the next figure. 

 

We consider N=rD, take the log of both sides, and get log(N) 
= D log(r). If we solve for D. D = log(N)/log(r) The point: 
examined this way, D need not be an integer, as it is in 
Euclidean geometry. It could be a fraction, as it is in fractal 
geometry. This generalized treatment of dimension is named 
after the German mathematician, Felix Hausdorff. It has 
proved useful for describing natural objects and for 
evaluating trajectories of dynamic systems.  

The length of a coastline 

Mandelbrot began his treatise on fractal geometry by 
considering the question: "How long is the coast of Britain?" 
The coastline is irregular, so a measure with a straight ruler, 
as in the next figure, provides an estimate. The estimated 



length, L, equals the length of the ruler, s, multiplied by the 
N, the number of such rulers needed to cover the measured 
object. In the next figure we measure a part of the coastline 
twice, the ruler on the right is half that used on the left. 

 

Measuring the length of a coastline using rulers of varying 
lengths. 

But the estimate on the right is longer. If the the scale on the 
left is one, we have six units, but halving the unit gives us 15 
rulers (L=7.5), not 12 (L=6). If we halved the scale again, we 
would get a similar result, a longer estimate of L. In general, 
as the ruler gets diminishingly small, the length gets 
infinitely large. The concept of length, begins to make little 
sense.  

The "Richardson Effect" 

Lewis Fry Richardson first noted the regularity between the 
length of national boundaries and scale size. As shown next, 
the relation between length estimate and length of scale is 
linear on a log-log plot. 

 



The Richardson Effect.  

Mandelbrot assigned the term (1-D) to the slope, so the 
functions are: 
log[L(s)] = (1-D)log(s) + b where D is the Fractal 
Dimension. 
For Great Britain, 1 - D = -.24, approximately. D = 1-(-.24) = 
1.24, a fractional value.The coastline of South Africa is very 
smooth, virtually an arc of a circle. The slope estimated 
above is very near zero. D = 1-0 = 1. This makes sense 
because the coastline is very nearly a regular Euclidean 
object, a line, which has dimensionality of one. In general, 
the "rougher' the line, the steeper the slope, the larger the 
fractal dimension.  

Examples of geometric objects with non-integer 
dimensions 

Koch Curve 

We begin with a straight line of length 1, called the initiator. 
We then remove the middle third of the line, and replace it 
with two lines that each have the same length (1/3) as the 
remaining lines on each side. This new form is called the 
generator, because it specifies a rule that is used to generate 
a new form. 

 

The Initiator and Generator for constructing the Koch 
Curve.  

 



The rule says to take each line and replace it with four lines, 
each one-third the length of the original.  

Level 2 in the construction of the Koch Curve.  

 

Level 3 in the construction of the Koch Curve.  

We do this iteratively ... without end. 

The Koch Curve.  

What is the length of the Koch curve?  

 

The length of the curve increases with each iteration. It has 
infinite length. But if we treat the Koch curve as we did the 
coastline, ...  



 

The relation between log(L(s)) and log(s) for the Koch curve 
...  

we find its fractal dimension to be 1.26. The same result 
obtained from D = log(N)/log(r) D = log(4)/log(3) = 1.26.  

Cantor Dust 

Iteratively removing the middle third of an initiating straight 
line, as in the Koch curve, ... 

 

Initiator and Generator for constructing Cantor Dust. ...  

this time without replacing the gap... 

 

Levels 2, 3, and 4 in the construction of Cantor Dust.  

Calculating the dimension ... D = log(N)/log(r) D = 
log(2)/log(3) = .63 We have an object with dimensionality 
less than one, between a point (dimensionality of zero and a 
line (dimensionality 1).  

Sierpinski Triangle 



We start with an equilateral triangle, connect the mid-points 
of the three sides and remove the resulting inner triangle. 

 

Constructing the Sierpinski Triangle.  

Iterating the first step. 

 

Constructing the Sierpinski Triangle. 

 

The Sierpinski Triangle.  

Calculating the dimension... D = log(N)/log(r) = 
log(3)/log(2) = 1.585. This time we get a value between 1 
and 2.  

The dimensionality of a strange attractor 



1. The trajectory of a strange attractor cannot intersect 
with itself. (Why?)  

2. Nearby trajectories diverge exponentially. (Why?)  
3. But the attractor is bounded to the phase space.  
4. The trajectory does not fill the phase space.  

A strange attractor is a fractal, and its fractal dimension is 
less than the dimensions of its phase space.  

Self-similarity 

An important (defining) property of a fractal is self-
similarity, which refers to an infinite nesting of structure on 
all scales. Strict self- similarity refers to a characteristic of a 
form exhibited when a substructure resembles a 
superstructure in the same form. 

Mandelbrot Set 

Found by iterating 
zn+1 = zn

2 + c. 
where z is a complex number. z0=0.  
For different values of c, the trajectories either: stay near the 
origin, or "escape". 
The Mandelbrot set is the set of points that are not in the 

Escape Set.  

The Mandelbrot set. The points in the set are painted black.  



The Escape Set differs in rate of escape, graphically depicted 
with different colors or altitudes ... 

 

Constructed using the computer program "The Beauty of 

Fractal Lab", by Thomas Eberhardt.  

So, what is a fractal? 

An irregular geometric object with an infinite nesting of 
structure at all scales.  

Why do we care about fractals? 

• Natural objects are fractals.  
• Chaotic trajectories (strange attractors) are fractals.  
• Assessing the fractal properties of an observed time 

series is informative. 

Nonlinear Statistical Tools 

A number of statistical techniques have been introduced to 
try to evaluate time series data. Their purposes include 1) 
attempting to distinguish chaotic time series from random 
data ("noise"), 2) assessing the feasibility that the data are the 
product of a deterministic system, and 3) assessing the 
dimensionality of the data. Here we introduce some concepts 
basic to these efforts.  

Return Maps 

What is a return map? 



A plot of xt against xdelta t  

Why is it plotted? 

To evaluate the structure of the measured trajectory. 

To illustrate, we start with a time series that was generated 
by randomly sampling from (0,1) interval. If we plot xn 
against xn+1 we get ...  

 
Return Map of time series from random Uniform 

distribution.  
As expected, the points scatter. 

Here's a return map from another random time series. 
This one sampled from an exponential (positively skewed) 
distribution.  



 
Return Map of time series from exponential distribution.  

Here we do not scatter all over. What's the point? You may 
have heard that a symptom of chaos is when the return map 
is confined to a region of the map. This illustrates how such a 
collection can occur, but from a random system. 

Now, remember this time series?  

 
A nonrandom Time Series 

It's from the Logistic Map in the chaotic region, r=3.99. 
What does its Return Map look like?  



 
Return Map from Logistic Map, r=3.99 

The structure of the generating function is entirely captured. 

So, a return map can be very handy, provided the data are 
from a one-dimensional system. If the system has more than 
two-dimensions, the return map has limited utility.  

 

Embedding dimension 

Okay. One more meaning of the term 'dimension'. 
It comes from extending the concept of a return map. 
Successive n- tuples of data are treated as points in n-space. 
The Return Map is an embedding dimension of 2. 

Suppose, for example, that the first six data values were 
4, 2, 6, 1, 5, 3,  
then for an embedding dimension of 3.  
P(1)= (4,2,6) 
P(2)= (2,6,1) 
P(3)= (6,1,5), and so forth. 

What's the point? 

Contemporary statistical analyses examine the geometric 
structure of obtained time series embedded with differing 
dimensions.  

 

Types of 'Noise' 



An older, linear, tool, for examining time series, is Fourier 
analysis, specifically, FFT (Fast Fourier Transform). FFT 
transforms the time domain into a frequency domain, and 
examines the series for periodicity. The analysis produces a 
power spectrum, the degree to which each frequency 
contributes to the series. If the series is periodic, then the 
resulting power spectrum reveals peak power at the driving 
frequency.  
Plotting log power versus log frequency,  

• White noise (and many chaotic systems) have zero 
slope.  

• Brown noise has slope equal to -2.  
• 1/f (Pink) noise has a slope of -1.  

1/f noise is interesting because it is ubiquitous in nature, and 
it is a sort of temporal fractal. In the way a fractal has self-
similarity in space, 1/f noise has self-similarity in time. 
Pink noise is also a major player in the area of complexity, 
our next topic. 

Glossary 

Definitions of several terms are a matter of some dispute.  
For a more technical treatment of some of these terms, see 
the faq sheet of the sci.nonlinear newsgroup. 
attractor The status that a dynamic system eventually 
"settles down to". An attractor is a set of values in the phase 
space to which a system migrates over time, or iterations. An 
attractor can be a single fixed point, a collection of points 
regularly visited, a loop, a complex orbit, or an infinite 
number of points. It need not be one- or two-dimensional. 
Attractors can have as many dimensions as the number of 
variables that influence its system. 
basin of attraction A region in phase space associated with 
a given attractor. The basin of attraction of an attractor is the 
set of all (initial) points that go to that attractor. 
bifurcation A qualitative change in the behavior (attractor) 
of a dynamic system associated with a change in control 
parameter.  
bifurcation diagram Visual summary of the succession of 
period-doubling produced as a control parameter is changed.  
chaos Behavior of a dynamic system that has (a) a very large 
(possibly infinite) number of attractors and (b) is sensitive to 
initial conditions.  
complexity While, chaos is the study of how simple systems 



can generate complicated behavior, complexity is the study 
of how complicated systems can generate simple behavior. 
An example of complexity is the synchronization of 
biological systems ranging from fireflies to neurons. (From 
the FAQ sheet of the sci.nonlinear newsgroup). 
complex system Spatially and/or temporally extended 
nonlinear systems characterized by collective properties 
associated with the system as a whole--and that are different 
from the characteristic behaviors of the constituent 
parts.(From the FAQ sheet of the sci.nonlinear newsgroup) 
control parameter A parameter in the equations of a 
dynamic system. If control parameters are allowed to change, 
the dynamic system would also change. Changes beyond 
certain values can lead to bifurcations. . 
difference equation A function specifying the change in a 
variable from one discrete point in time to another.  
differential equation A function that specifies the rate of 
change in a continuous variable over changes in another 
variable (time, in this book). 
dimension See embedding dimension, box-counting 
dimension, correlation dimension, information dimension, 
dimension of a system. 
dimensions of a system The set of variables of a system.  
dynamic system A set of equations specifying how certain 
variables change over time. The equations specify how to 
determine (compute) the new values as a function of their 
current values and control parameters. The functions, when 
explicit, are either difference equations or differential 
equations. Dynamic systems may be stochastic or 
deterministic. In a stochastic system, new values come from 
a probability distribution. In a deterministic system, a single 
new value is associated with any current value.  
embedding dimension Successive N-tuples of points in a 
time series are treated as points in N dimensional space. The 
points are said to reside in embedding dimensions of size N, 
for N = 1, 2, 3, 4, ... etc. 
fractal An irregular shape with self-similarity. It has infinite 
detail, and cannot be differentiated. "Wherever chaos, 
turbulence, and disorder are found, fractal geometry is at 
play" (Briggs and Peat, 1989). 
fractal dimension A measure of a geometric object that can 
take on fractional values. At first used as a synonym to 
Hausdorff dimension, fractal dimension is currently used as a 
more general term for a measure of how fast length, area, or 
volume increases with decrease in scale. (Peitgen, Jurgens, & 
Saupe, 1992a). 



Hausdorff dimension A measure of a geometric object that 
can take on fractional values. (see fractal dimension). 
initial condition the starting point of a dynamic system. 
iteration the repeated application of a function, using its 
output from one application as its input for the next.  
iterative function a function used to calculate the new state 
of a dynamic system.  
iterative system A system in which one or more functions 
are iterated to define the system. 
limit cycle An attractor that is periodic in time, that is, that 
cycles periodically through an ordered sequence of states. 
limit points Points in phase space. There are three kinds: 
attractors, repellors, and saddle points. A system moves away 
from repellors and towards attractors. A saddle point is both 
an attractor and a repellor, it attracts a system in certain 
regions, and repels the system to other regions. 
linear function The equation of a straight line. A linear 
equation is of the form y=mx+b, in which y varies "linearly" 
with x. In this equation, m determines the slope of the line 
and b reflects the y-intercept, the value y obtains when x 
equals zero. 
logistic difference equation see logistic map  
logistic map x(n+1)= rx(n)[1- x(n)]. A concave-down 
parabolic function that (with 0<r 
Lorenz attractor A butterfly-shaped strange attractor. It 
came from a meteorological model developed by Edward 
Lorenz with three equations and three variables. It was one of 
the first strange attractors studied. 
Lyapunov Number (Liapunov number) The value of an 
exponent, a coefficient of time, that reflects the rate of 
departure of dynamic orbits. It is a measure of sensitivity to 
initial conditions. 
nonlinear function One that's not linear! y would be a 
nonlinear function of x if x were multiplied by another 
variable (non-constant) or by itself (that is, raised to some 
power. 
nonlinear dynamics The study of dynamic systems whose 
functions specifying change are not linear. 
orbit (trajectory) A sequence of positions (path) of a system 
in its phase space. 
period-doubling The change in dynamics in which a N-point 
attractor is replaced by a 2N-point attractor. 
phase portrait The collection of all trajectories from all 
possible starting points in the phase space of a dynamic 
system. 
phase space (state space) An abstract space used to 



represent the behavior of a system. Its dimensions are the 
variables of the system. Thus a point in the phase space 
defines a potential state of the system. The points actually 
achieved by a system depend on its iterative function and 
initial condition (starting point). 
recursive process For our purposes, "recursive" and 
"iterative" are synonyms. Thus recursive processes are 
iterative processes, and recursive functions are iterative 
functions. 
repellors One type of limit point. A point in phase space that 
a system moves away from. 
return map Plot of a time series values n vs. n+1. 
saddle point A point, usually in three-space, that both an 
attracts and a repels, attracting in one dimension and 
repelling to another. 
self-similarity An infinite nesting of structure on all scales. 
Strict self- similarity refers to a characteristic of a form 
exhibited when a substructure resembles a superstructure in 
the same form.  
sensitivity to initial conditions A property of chaotic 
systems. A dynamic system has sensitivity to initial 
conditions when very small differences in starting values 
result in very different behavior. If the orbits of nearby 
starting points diverge, the system has sensitivity to initial 
conditions. 
starting state see initial condition 
state A point in state space designating the current location 
(status) of a dynamic system. 
state space (phase space) An abstract space used to 
represent the behavior of a system. Its dimensions are the 
variables of the system. Thus a point in the phase space 
defines a potential state of the system.  
strange attractor N-point attractor in which N equals 
infinity. Usually (perhaps always) self-similar in form.  
time series A set of measures of behavior over time.  
Torus An attractor consisting of N independent oscillations. 
Plotted in phase space, a 2-oscillation torus resembles a 
donut. 
trajectory (orbit) A sequence of positions (path) of a system 
in its phase space. The path from its starting point (initial 
condition) to and within its attractor. 
vector A two-valued measure associated with a point in the 
phase space of a dynamic system. Its 1) direction shows 
where the system is headed from the current point, and its 2) 
length indicates velocity. 
vector field The set of all vectors in the phase space of a 



dynamic system. For a given continuous system, the vector 
field is specified by its set of differential equations. 

 

 

 


