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ABSTRACT 

The analysis of many complex problems and complex dynamic systems shows that there 
are dependencies between high complexity and the existence of large grids in the 
underlying structures containing inhomogeneous elements and including an irregular flow 
of information. This complexity criterion is formulated in a precise way and analysed in 
different areas of application, particularly for selected problems from economics and 
finance. We discuss how our criterion can be applied to make complex problems more 
tractable by exploring structural parameters to control the complexity of problems and 
systems in complexity engineering. In some areas the criterion is provable in a strong 
mathematical sense, whereas in others it is confirmed by numerous examples, without 
finding a counterexample. The areas of application cover: complexity theory, design of 
efficient algorithms, dynamic systems, chaos theory, neural networks, auctions, capital 
markets, portfolio credit risk and operational risk management. 

 

1. INTRODUCTION  

The growing complexity of many real world problems is one of the biggest challenges of 
our time. Besides the high complexity even of single products or systems and the 
corresponding complexity of the technologies to develop these components, the problems 
usually get more difficult e. g. by the globalisation of companies and competition, the 
quick and ubiquitous flow of information through the growing World Wide Web 
(transport systems, communication systems, etc.), the appearance of electronic commerce, 
the speed up of time to market (i. e. from the first ideas to the final products) as a 
necessity to survive in business, the pure size and the number of components and 
development steps for new products. 

                                                 
1 This paper is supplementary material for a series of talks which the first author gave in May 2002 at the 
School of Finance and Economics of the University of Technology in Sydney, at the School of Mathematics 
and Statistics of the University of Sydney and at the Sydney Financial Mathematics Workshop. The material 
is based on the two original articles Seese & Schlottmann (2002) and Schlottmann & Seese (2002). 
2 Partial support from GILLARDON AG financial software is gratefully acknowledged. The views 
expressed in this paper are results of independent research and do not necessarily reflect the views of 
GILLARDON AG financial software. 
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Moreover, it seems that managers and politicians confronted with real life situations 
and/or systems of growing complexity fail too often, and many problems are too difficult 
to expect correct or at least adequate decisions, see e. g. Tschoegl (2000) and King (2001) 
for an overview and an analysis of well-known historic debacles in the financial industry. 
The problem is that the reason for this is not a lack of intelligence – usually managers are 
highly educated and are supported by sophisticated tools and qualified staff.  

One of the main problems in complexity research is quite fundamental – it is the lack of a 
precise definition or a useful criterion that helps us to decide whether a problem, situation, 
or system has to be called complex. Usually such complex problems, situations, or 
systems are defined by giving a collection of properties characterising them as complex. 
The typically used properties for describing complex entities are:  

inestimable, incalculable, confusing, highly connected, having their own 
momentum, non-transparent, devious, depending on probabilities, unstable, 
depend on non-linear processes, having a very large number of parts connected 
together in a particular pattern, being difficult to understand or to explain 
because there are many different aspects or people involved.  

For instance, Carkhuff et al. (2000) define complexity as  

the inability to relate to or represent the interdependent process and processing 
relationships within and between systems. 

It is not the goal of this paper to discuss all possible definitions of different aspects of 
complexity - especially for computer science many formal definitions that are trying to 
cover the aspect of the interaction between machines or agents with bounded resources in 
a problem solving process can be found in the literature (see e. g. Papadimitriou (1994)). 
Instead, we will present a structural criterion which seems to be responsible for high 
complexity of many theoretical and practical problems. The basic question is whether 
there exists a reason for high complexity of problems and the behaviour of systems which 
can be explained by an examination of the input structures to the problem, the internal 
structure of the regarded system or the necessary communication structure of the methods 
that solve the regarded problems algorithmically. To get a possible answer to this 
question, we have identified a uniform criterion within the huge diversity of theoretical 
and real life complex problems. The goal of this paper is to present our ideas, arguments 
and examples together with some proposals how to make the criterion applicable to 
complexity engineering, particularly for economic and financial problems. 

The paper is organised as follows. In the next section we will develop the basic idea of the 
criterion by discussing NP-hard problems and tiling problems. The theoretical foundation 
for the structural ideas is presented in section 2, where the necessary definitions of graphs, 
grids and graph minors together with related main results are presented. In section 3 we 
build a bridge to the control of dynamic systems. Section 4 presents a collection of some 
examples from different areas of application: auctions, capital markets, credit risk and 
operational risk management. The paper ends with concluding remarks and references.  
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1. COMPUTATIONAL COMPLEXITY AND LARGE GRIDS 

When we are thinking about computational complexity, NP-hardness is one of the most 
famous notions. Many algorithmic problems in real world applications are NP-hard (see 
Garey & Johnson (1979)) and their NP-hardness is the preferred argument that is given if 
we are not able to find an efficient solution to a problem and propose a heuristic approach 
instead of an exact algorithm. By definition, a problem is NP-hard if each problem in the 
complexity class NP, i. e. all problems solvable by a non-deterministic algorithm in 
polynomial time, are reducible to it in polynomial time. A problem is NP-complete if it is 
NP-hard and inside the class NP. Hence, the NP-complete problems are the hardest 
problems among all those that can be solved by a non-deterministic algorithm in 
polynomial time and until now there has not been any solution for such a problem by a 
deterministic polynomial time algorithm (polynomial in the size of the input). 

To get a feeling how structure influences the complexity of a problem we first look at 
computational complexity of decision problems for graphs. Usually a property P of graphs 
is given here and the question is for an arbitrarily given graph G, whether G has the 
property P or not. Examples of such properties are: 

PLANARITY     HAMILTONIAN CIRCUIT 
instance: graph G    instance: graph G 
question: Does G have an embedding  question: Does G contain a Hamiltonian  
without edge-crossings in the   circuit, i. e. a subgraph of G which is a 
Euclidean plane?    circuit containing each vertex of G? 

While the left problem can be solved in linear time for all graphs, the right one is a 
standard example of a NP-complete problem, for which no polynomial time solution has 
been found until now. In Papadimitriou (1994) a profound introduction to computational 
complexity of decision problems is given. Many problems are investigated with respect to 
their complexity, e. g. in Garey & Johnson (1979), Downey & Fellows (1999) and 
Brandstaedt et al. (2000), and many of them are interesting for real world business 
applications. There are different attempts to make a complex decision problem tractable 
by restricting the class of problem instances to graphs with a special structure, e. g. to 
planar graphs or trees instead of the class of all graphs (see section 3 for definitions). It is 
a surprising observation that almost all NP-complete problems remain NP-complete for 
almost all restrictions of the input, with the exception of structures closely related to trees 
(see figure 1 below).  
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classes of graphs for which many problems are complex (NP-hard)
class of all graphs

planar graphs
planar graphs of bounded degree

…

?  characterise the borderline between these areas  ?

…
series parallel graphs
outerplanar graphs

forests
trees

classes of graphs for which many problems are easy to solve
(solvable in polynomial or linear time or with decidable theories)  

Figure 1: borderline between complex and non-complex graph problems 

For trees and graphs with a structure closely related to trees (up to a certain parameter - 
see e. g. Downey & Fellows (1999)) most algorithmic problems are solvable in 
polynomial or even linear time. So the natural question is to search for a characterisation 
of the borderline between these different kinds of behaviour by finding a structural reason 
for high and for low complexity. Surprisingly, the attempts to achieve this were partially 
successful (see section 2) and led to the criterion presented in this paper.  

To shape the idea of our criterion, it is necessary to look at the proof that a given problem, 
say P, is NP-hard. The usual way to prove this is to choose a problem Q, which is known 
to be NP-hard and show that Q can be reduced to the given problem P. The following 
problem often serves as ‘master’ reduction problem from the problem class NP. 

TILING 
instance: D:={t0,…,tk} set of square tile types together with two relations H,V⊆DxD (the 
horizontal and vertical compatibility relations, respectively) and a natural number n 
question: Is there a nxn tiling, i. e. a function f:{1,…,n}x{1,…,n}→D such that  
(a) f(1,1)=t0, and  
(b) for all i,j: (f(i,j),f(i+1,j))∈H, and (f(i,j),f(i,j+1))∈V? 

There are many variants and applications of the tiling problem in complexity, decidability, 
picture recognition and physics, also for other shapes and general covering problems. 
Figure 2 shows a visual representation of a set of tiles and a tiling for n=3. 
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Figure 2: tiling problem example for n=3 

We will call a decision problem undecidable if there is no algorithm to solve it, otherwise 
it is decidable. For our applications the following result is important. 

(1) Theorem (see e. g. Papadimitriou (1994)): TILING is NP-complete if n is given in 
unary representation, it becomes NEXP-complete if n is given in binary representation, 
the problem becomes undecidable if it is asked whether there exists an nxn-tiling for all 
n>0, even when the origin constraint, condition (a), is omitted. 

Assume now that we are regarding a decision problem P for a class K of input structures 
for which we are not able to find a polynomial time solution. In this case it is often 
conjectured that the problem is NP-hard. If we need a proof for this conjecture the only 
thing to do is to find a polynomial time reduction of the TILING problem to the original 
problem, i. e. we have to find an algorithm F which transforms each tiling problem 
(D,V,H,n) in polynomial time into an input structure F((D,V,H,n))=G∈K such that there 
exists an nxn-tiling of (D,V,H) if and only if F((D,V,H,n)) has property P. Usually, this is 
accomplished by showing that some elements G∈K contain (in a definable way) a large 
grid structure representing the positions of the tiles in the nxn-square, that the local 
structure of these elements G permits the coding of the tiles and permits a ‘flow of 
information’ along the edges of the grid in such a way that it can be verified whether two 
neighbouring tiles fit together (horizontally or vertically). 

The analysis of this proof leads us to the possibilities to reduce the complexity of a 
problem P on a class K of structures either by trying to avoid the possibility to find or 
define large grids inside the input structures, or by avoiding the possibility to code the 
tiles, or by avoiding the flow of information between parts of the structure coding 
different tiles. This can be achieved by not allowing input structures which contain large 
grids (in a definable way – specified later in section 3) or by restricting the local structure 
of the input in such a way that the structures look locally the same (i. e. are very regular or 
locally isomorphic), or simply by restricting the flow of information. Of course the coding 
has to be done in such a way that the ‘decoding’ is reflected in a certain way by the 
regarded property P. 
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possibilities to avoid high complexity

A: restrict the maximum B: restrict the local structure C: restrict the flow of
size of the grids to avoid the possibility to information between
embeddable or definable code different tiles inside the parts of the
in the input-structures the input structures structure coding the tiles

 

Figure 3: possibilities to avoid high complexity 

In the following sections we will make this notions more precise and we will show that 
the criterion underlying figure 3 is not only of relevance in computational complexity, but 
it is also important for complexity investigations of dynamic systems and in several other 
areas of real world applications. 

 

2. SOME IMPORTANT RESULTS FROM TOPOLOGICAL GRAPH THEORY 

To give a formal definition of our criterion we use standard mathematical and graph 
theoretic terminology that can be found in any standard text book. Usually N denotes the 
set of natural numbers and i, j, k, l, m, n are used for elements of N. The cardinality of a 
set X, i. e. the number of its elements, is denoted as X. To make the article also 
readable for those not familiar with graph theoretic concepts we present some of the 
necessary terminology here and refer the reader to the details in the literature, e. g. West 
(1996). A simple graph G:=(V, E) with n vertices and m edges consists of a vertex set 
V:=V(G)= {v1, … ,vn} and an edge set E:=E(G)={e1, … ,em}, where each edge is an 
unordered pair of vertices. We write uv for the edge (u,v) and say that u and v are 
adjacent when uv∈E(G). Remember that in this interpretation uv=vu. In this case the 
vertices u and v are denoted the endpoints of the edge e=uv. Define n(G)=:n and 
m(G)=:m. The degree of a vertex a in a graph G is the number of vertices adjacent to it. A 
path is a finite graph with exactly two vertices of degree 1 and without vertices of degree 
≥3. A graph G is said to be connected if for each pair of vertices a and b there is a 
subgraph H of G which is a path and contains a and b. Usually, the graphs in this paper 
are assumed to be finite. Exceptions of this rule will be clear from the context or will be 
explicitly mentioned. Two graphs H and G are said to be isomorphic if there is a 1-1-
function f from V(H) onto V(G) such that for all pairs of vertices (u,v) of V(H) uv is 
adjacent in H if and only if f(u)f(v) are adjacent in G. A graph H is said to be a subgraph 
of a graph G, denoted as H⊆G, if V(H)⊆V(G) and E(H)⊆E(G). If e:=uv is an edge of G, 
then contracting e means replacing both endpoints of e by a new single vertex a, and 
choosing a new graph G.e:=(V(G.e),E(G.e)), where V(G.e):=(V(G)\{u,v})∪{a} and 
E(G.e):=E(G)\({ux: x∈V(G)}∪{xv: x∈V(G)))∪{ax: x∈V(G)}∪{xa: x∈V(G)}. A graph 
H is a minor of a graph G if H results from a subgraph of G by contracting some of its 
edges. We do not distinguish graphs from their isomorphic copies here.  

The following structures are essential ingredients for the high complexity of many 
problems. Let n>0 be an arbitrary natural number. The n-grid Qn is the graph defined by 
V(Qn):={(i, j): 0≤i<n and 0≤j<n} and E(Qn):={{(i,j), (k,l)}: i-k+j-l=1, 0≤i,j,k,l<n}. 
Define the infinite grid Q∞:=(V(Q∞), E(Q∞)) by V(Q∞):={(i, j): i∈N, j∈N} and 
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E(Q∞):={{(i,j), (k,l)}: i-k+j-l=1 and i,j,k,l∈N}. It is easy to see that for each planar 
graph H (for a definition of planarity see section 2), there is an n such that H is a minor of 
the n-grid Qn (see Robertson & Seymour 1984). A surprising observation is that graphs 
which avoid n-grids as minors (for a fixed n) have a structure which is up to a certain 
parameter – the tree width – closely related to trees. The result is one of the structural 
components of our criterion discussed in the previous section. This structural result is the 
essential reason that a certain set of algorithmic problems can be solved efficiently. 

To make the ideas more precise we need the notion of tree decomposition. A forest is a 
graph which does not contain a cycle. A tree is a connected forest. A tree decomposition 
of a graph G is a pair (T,X), where T is a tree and X:= (Xt: t∈V(T)) is a family of subsets 
of V(G) with the following properties: 
(Xt: t∈V(T))=V(G), for every edge e of G there exists t∈V(T) such that e has both ends in 
Xt, and for t,t’,t’’∈V(T): if t’ is on a path of T between t and t’’, then Xt∩Xt’’⊆Xt’.  

The width w((T,X)) of the tree decomposition (T,X) is max(Xt-1: t∈V(T)). The graph 
G has tree width tw(G):=m if m is the minimum k such that G has a tree-decomposition of 
width k. 

The following landmark result concerning grids, minors and tree width shows that graphs 
without large grid minors are essentially ‘tree structured’. 

(2) Theorem (see Robertson & Seymour (1996)): For every planar graph H there is a 
natural number nH such that every (even possibly infinite) graph G without H as minor has 
tree width ≤nH. 

A class K of graphs has universally bounded tree width if there is a natural number m 
such that the tree width of each graph in K is bounded by m, i. e. tw(G)≤m for each G∈K. 
There is a world of results proving that many algorithmic problems for many classes of 
graphs of universally bounded tree width can be solved in a time being polynomial or 
even linear in their input size. Moreover, there are many uniform approaches defining an 
algebraic, a logic or a hybrid calculus which allow us to describe algorithmic problems 
and to construct efficient algorithmic solutions for such problems, sometimes even in an 
automatic way (see e. g. Arnborg et al. (1991), Courcelle et al. (2000)). 

Together these results give a good theoretical explanation why so many problems for 
input structures without large grids can be solved efficiently: 

• Graphs without large grids have a close similarity to trees. 

• For such graphs, many global problems can be solved by algorithms working 
locally in a way similar to dynamic programming, hence they can be solved in 
linear time. 

As a consequence, we can conclude that almost all algorithmic problems for graphs 
without large grids (i. e. of bounded tree width) can be solved in linear time. These 
problems contain almost all NP-hard problems for graphs and networks. 

Now assume that grids of arbitrary size can be contained in the class of input structures. Is 
it possible to give a good characterisation of the structures and problems for which we can 
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expect efficient algorithms in this case? The results in this area are not as elaborate as in 
the preceding considerations. Hence, we will show an example from classic efficient 
algorithms underlining our arguments about the connections between structure and 
complexity.  

A standard problem of computer science is the problem of sorting a set of n input 
elements corresponding to a given key. Such a general sorting problem can be solved in 
O(n log n) time. The sorting problem asks for the existence of a linear ordering which 
sorts the elements according to the same order defined by the given ordering of their keys. 
In this setting the problem is not obviously a question about graphs of bounded tree width 
since the graph underlying a linear ordering is a complete3 graph (simply transform each 
directed edge of the ordering into an undirected edge). A complete graph of n vertices has 
the tree width n-1 and contains the �√n� x �√n� grid as subgraph. 

Looking more carefully at the structures underlying the ordering problem, it is observable 
that the input structures can be represented as ordered trees, i. e. trees whose branches are 
linear orderings4, and the output structures are closely related to graphs of path width5 2, i. 
e. they result from a graph of path width 2 by substituting two of its paths by a linear 
ordering. But in an ordered tree the successor relation, whose transitive closure is the 
ordering of the tree, can be used to define the partial ordering of the ordered tree. This can 
be used as basis of a transformation of the ordering problem into a tree problem. It can be 
shown in a related way that many algorithmic problems with known efficient solutions, e. 
g. breadth-first search, depth-first search, planarity, minimum spanning tree, topological 
sort, max-flow, can be solved by algorithms using a flow of information whose structure 
is closely related to trees or paths (see Seese & Schlottmann (2001) for more details). 

 

3. STRUCTURE OF DYNAMIC SYSTEMS AND COMPLEXITY 

Dynamic systems are very important for many real world applications, particularly in 
market-driven economic dynamics and many everyday business life contexts. During the 
last 10–15 years there has been a lot of success in the study of dynamic systems. The 
literature on these subjects is very large and growing, and it is impossible for us to give an 
exhaustive presentation. In this section, we will have a look at dynamic systems with 
respect to the question how structure influences complexity. 

On a first look it seems that dynamic systems are typically much easier than complex 
decision problems, since for dynamic systems we are usually interested in the iteration of 
a ‘simple’ function f, i. e. we start from a value x0 and define xt+1:=f(xt) for all t=0,1,2,…, 
so we are interested in the trajectory generated by the iteration of the function f starting 
from a given value. Possibly, f can have additional parameters. Typical problems in this 
area are:  

                                                 
3 A graph is complete if each pair of its vertices is connected by an edge. A complete graph with n vertices is 
denoted (up to isomorphism) as Kn.  
4 In this special case only one branch is used – the given linear ordering. 
5 Path width is defined in the same way as tree width, the only difference is that the underlying graph of the 
tree decomposition has to be a path. 
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STATE CAN BE DRIVEN TO THE ORIGIN, where a system xt+1:= f(xt,ut) and a fixed 
initial state x0 are given and the question is whether there exist some T≥1 and controls ut, 
t=0,…,T-1, such that xT=0,  
NULLCONTROLLABILITY, asking whether all states x0 can be driven to the origin, 
TRAJECTORY GOES TO THE ORIGIN, asking for a system xt+1:=f(xt,ut) and a fixed 
initial state x0 whether there exist some T≥1 such that xT=0, and  
ALL TRAJECTORIES GO TO THE ORIGIN, asking whether for every x0 there exists a 
T such that xT=0. 

For linear systems all these problems can be solved in polynomial time (see Sontag 
(1995)). For arbitrary systems this question is stated too general and usually too difficult 
to answer, e. g. the null-controllability problem for general non-linear systems includes 
the problem of deciding whether a given arbitrary non-linear equation Φ(u) = 0 has a 
solution (see Blondel & Tsitsiklis (2000) for more details). Even if the system inhibits 
only a single scalar non-linearity the problem to decide about stability is difficult, as 
illustrated by the example of Neural Networks whose activation function is a saturated 
linear function. For this case, Siegelmann and Sontag (1995) showed that TRAJECTORY 
GOES TO THE ORIGIN is undecidable by simulating Turing machines. This is relevant 
to many finance applications since Neural Networks are a common method for prediction 
of economic time series, e. g. asset prices over time. 

What is it that makes such systems complex in case of non-linear functions and why they 
remain easy for linear functions? Is there a connection to our criterion on grids? These 
problems are of arithmetic kind in a certain sense and graphs do not appear on a first look. 
Of course, these problems are proved to be NP-hard or undecidable via the usual proof 
techniques, hence tilings and Turing Machines are reduced to this problems, and so grids 
occur on a second view. But the grids can also be found by a more direct consideration. 
To demonstrate this, let us focus now on a slightly different, but nevertheless famous 
problem, the decision problem for the Mandelbrot set, firstly asked by R. Penrose. It is 
defined by the recursion x=x2+c over the complex numbers. The loop of the recursion 
terminates with output 1 if |x|>2. Blum & Smale (1993) used a special computation model 
over real numbers from Blum et al. (1989) to show that this set is undecidable.  

Another example of an iteration leading to undecidable sets is the Newton’s method used 
to solve mathematical problems in many applications. It is a method to search for 
approximate zeros ζ of functions f, i. e. values ζ with f(ζ)=0. The corresponding decision 
problem is whether the Newton method converges for a given starting point. Using the 
BSS-model of computation over R, the following theorem was proved: 

(3) Theorem (see e. g. Blum et al. (1998)): The Mandelbrot set and the set of points that 
converge under Newton‘s method are undecidable over R. 

Algorithmically, the decision problems from (3) are quite simple, the algorithms are just 
realisations of one loop. So what is so difficult about computing one loop containing only 
very simple arithmetic operations? In case of the Mandelbrot set it is just one 
multiplication and one addition of complex numbers. By analysing a single iteration step 
we can see that if x and c have the form x=a+bi and c=d+ei, then the result of the next 
step of the iteration is of the form x=x2+c=(2ab+e)i+a2–b2+d, where a, b, d and e are real 
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numbers and i is the complex unit. It is obvious that the arithmetic properties of this 
operation are quite simple. But where is the hidden complexity? 

The first reason is the size of the objects handled in this algorithm – the numbers. Let us 
assume that we work with real numbers having finite binary representations (see below) 
as inputs and start with an input c of size n. More exactly, we could assume that the length 
of the binary representation of both components d and e have a length of at most n. After 
the first step, the length of the representation of the result has already doubled (exactly it 

is at least 2n –1; the size of the represented number grows nearly to 2(2
n

) after n steps). If 
we use an arithmetic of an arbitrary high precision (i. e. we allow registers of arbitrary 
large finite size) the representation of the intermediate result has at least a size of 2t(n–
1)+1 after t steps of running the loop. Hence, even writing down the intermediate results 
is difficult since they are growing exponentially large. However, it is not necessary to 
know the complete intermediate result for the final decision, since it is sufficient to check 
whether the equivalent condition a2+b2>4 is true for the actual value of x=a+bi. To see 
more details, let us represent the real part and the imaginary part of a complex number by 
a sequence of bits, respectively, where we separate the bits representing the integer parts 
from the bits representing the fractional parts by a dot, e. g. the real part by 
(us us-1...u1 . u-1 u-2...u-(r-1) u-r...) and the imaginary by (vt vt-1...v1 . v-1 v-2...v-(r-1) v-r...). 
Moreover, let us assume that we compute using finite complex numbers only, i. e. 
numbers whose representation of the real as well as of the imaginary part can assumed to 
be finite. To analyse the complexity from a structural point of view, assume that we are 
interested in the subproblem to decide about the outcome of the underlying recursion after 
T steps for an arbitrarily given natural number T and an arbitrary finite input x. To decide 
about the result, it is sufficient to know whether there exists an integer t with 1≤t≤T for 
which there are more than two bits set to 1 in the representation on the left side of the 
point in the binary representation of a2+b2, where x=a+bi is the result of the computation 
at step t.  

Now define a communication graph for an algorithm. The idea is just to look exactly what 
possibly happens with the content of the variables on a bit level at each time step. So a 
communication graph consists of vertices that represent all possible contents of the 
variables on a bit level at each step of time, and there are edges between such ‘bit 
positions’ if they possibly influence each other (see Seese & Schlottmann (2001) for 
details and Hromkovic (1997) for related ideas). We are particularly interested in the size 
of embeddable grids, i. e. the tree width, and in regularities of the communication graphs. 

A simple observation is that the Mandelbrot set problem becomes trivial if the size of the 
input and the size of the intermediate results are bounded by a fixed n. In this case, the 
tree width of the corresponding communication graph is bounded and the problem 
becomes obviously decidable. Particularly, the decidability is trivial since for each fixed 
bound of the number of bits in the variables the algorithm degenerates to a finite 
automaton. 

(4) Lemma: The tree width of the communication graph of the above algorithm for the 
Mandelbrot set cannot be bounded. 

This is caused by the growing number of necessary bits for the representation of the 
intermediate results. It is known that there is no uniform bound for the length of the 
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recursion for arbitrary inputs. The rest follows from an analysis of the communication 
necessary to multiply numbers having large representations. It is not difficult to see that 
the communication graph defined above contains a bipartite graph Km,m whose size m is 
growing with the size of the calculated numbers. Since it is a well known fact that the tree 
width of such graphs is growing with m, the tree width is not bounded. 

Hence, we have an indication for well known dynamic systems that complex problems are 
connected with large grid sizes. With respect to our philosophy, it is useful to observe that 
the communication graphs are quite regular. However, the irregularity that seems to be 
necessary in a certain sense for high complexity comes from the different inputs here 
which cause an irregular flow of information along the regular communication graph. 
This again gives evidence of a possible connection between high complexity of dynamical 
systems on one side and large grids, irregularities and an unbounded information flow on 
the other. Nevertheless, this is not a strict proof that high complexity for dynamic systems 
and large grids are causally related, it is only an indication that there could be a 
connection. Related questions can be asked for other dynamic systems, which are of 
special interest for economic and business applications (see e. g. Sterman (2000)). The 
complexity of many real world systems and problems is mainly caused by an interaction 
of structural complexity and the dynamics of the systems and processes. The above 
mentioned Mandelbrot set is an example for an algorithmic problem based on a simple 
loop but the prediction of its behaviour is nevertheless very complex. Therefore, it is 
obviously more complex to try to predict the behaviour of more complicated systems in 
many real world application contexts, e. g. in prediction of financial markets or other 
economic applications. We will provide some consequences and solutions for further 
applications in the next section. 

 

4. SELECTED APPLICATIONS IN ECONOMICS AND FINANCE 

4.1. Auctions and capital markets 

Contrary to fixed pricing, where a market participant endogenously sets a price for a 
product or service that has to be accepted or refused by the responding market participant, 
in dynamic pricing the price is dynamically determined by bids of the market participants. 
We concentrate on multi item auctions where interdependent auctioned items are regarded 
and where bidders have got preferences over combinations of items. There are several 
applications, e. g. allocation of bandwidth, transportation or manufacturing tasks, as well 
as contracts between construction companies or electricity markets. 

A multi item auction can be modelled as a combinatorial auction, i. e. we start with a 
universe O of traded objects and the buyers supply the auctioneer with a set A of bids. 
The i-th bid is a subset Ai of O and a price pi that the buyer i is willing to pay for all the 
objects in Ai. Our auctioneer has to choose a collection of bids B⊆A that yields the best 
possible total price while being consistent, in the sense that no two sets Ai and Aj from A 
overlap. The auctioneer’s decision which of the conflicting bids to accept is related to 
graph theoretic concepts. A bid graph G consists of a set of vertices of G, which are the 
bids and a set of edges, where an edge is placed between any two bids if they share an 
object. Each vertex gets a weight equal to the value of the bid it represents. In this 
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notation the auctioneer’s goal is to find the most valuable consistent set of bids. But this 
problem is equivalent to the maximum weight independent set problem, which is NP-hard 
and cannot be approximated to within a ratio O(n1- ε) for an n-node graph and any 
positive ε, unless P=NP (see Akcoglu et al. (2001)). The problem remains NP-complete 
for cubic planar graphs and becomes solvable in polynomial time for many classes of 
structures of bounded tree width (see Garey & Johnson (1979)). Hence, we have again a 
problem caused by large grids and an example for a solution by restriction of the grid size. 

Moreover, Aspnes et. al. (2000) showed that in a double auction capital market, i. e. a 
market where stock buyers and stock sellers compete in a two-sided auction, the 
possibility of predicting future prices depends heavily on the computational complexity of 
market participants’ trading strategies. If there are a large number of traders but they 
employ a relatively small number of simple strategies, then there is an algorithm for 
predicting future price movements with high accuracy in polynomial time. However, if 
the number of trading strategies is large, market prediction becomes computationally 
more complex than NP-complete problems (Aspnes et al. (2000) define a corresponding 
strong complexity class). Grids can be found here because of the common reduction 
techniques used in the proofs of these facts. 

4.2 Risk management 

The management of risk from financial transactions, e. g. lending money or holding 
positions in the financial markets, and the management of aggregated risk in whole 
institutions, e. g. banks, or in world-wide financial systems has become more important 
than ever during the last years. This is due to the large extent of financial disasters that has 
been observable (Long-Term Capital Management hedge fund crash, Barings Brothers 
bank debacle, etc.). Since the world is getting more and more dependent from its fragile 
financial system, the management of aggregated risk will be one of the big challenges for 
the financial industry (and e. g. for politicians and the financial supervision authorities) in 
the future. It must be pointed out here that most aspects of risk management are also 
relevant to other business industries like large manufacturing companies. 

At first, it is important to distinguish between uncertainty and risk concerning decision 
situations e. g. for a manager. Basically, the latter situations are characterised by a non-
empty set S, S > 1 of possible outcomes for a variable X (e. g. describing a certain state 
of a system or an amount of loss) at a fixed future time horizon t and probabilities Prob (X 
= s) ∈ [0,1] for the occurrence of each s ∈ S at time t. In contrast to this, if we face a 
decision under uncertainty over X we are not provided with possible outcomes and/or the 
probabilities of the outcomes are not known. Of course, such uncertain situations and 
events are usually not manageable unless we get more knowledge about them, whereas 
decisions under risk can be managed to some extent (i. e. they can not be managed 
perfectly by 100 percent confidence). 

The probabilities Prob (X = s) can either be objective (true probabilities) or subjective (a 
priori probabilities estimated by the risk manager). In practical applications, the true 
probabilities are not known, so they have to be estimated from observations. This often 
leads to some problems due to the lack of data and/or the quality of available data sources. 
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Typically, when we talk about risk management we are mainly interested in negative 
consequences from outcomes of the variable X, e. g. if X represents a yield which we 
expect to obtain from an investment we are only interested in situations where X falls 
below a fixed target value s’: X < s’ or equivalently, X – s’ < 0. 

Now we will create an illustrative example to show how risk management decisions in an 
economy are related to our criterion. Consider a bank manager who knows that the profit 
of his bank at the end of the next year depends completely on the same year’s profits of 
different companies, e. g. they are obligors of the bank and the bank has no other sources 
of profits. The companies operate in a certain common economic environment. The bank 
manager wants to be sure that the bank’s profit will not fall below a certain minimum 
level since otherwise he will get no payment from the bank’s owners or the bank will even 
go bankrupt if the bank’s losses (loss = negative profit) exceed a critical level. How will 
he try to manage this situation? 

Figure 4 shows the main focus of current risk management methodology from our view of 
complexity in the context of the above example. 

At first, the bank’s manager will try to transform the uncertain decision situation 
described above into a risky one. This means he will build (or select) a model of the 
whole system containing the companies from which the bank’s profit depend. Using 
current risk management methodology, he will e. g. choose a random variable Xi having a 
certain probability distribution as a representative for each relevant company i in his 
model and use correlations between the variables to express the dependence between the 
different companies. Then he will estimate the parameters for his model from his own 
observations of the behaviour of the real-world system. Finally, he will use the model to 
estimate the distribution of the bank’s profits and derive his own management decisions 
to influence the real-world system towards his own goals.  

It is important to keep in mind that each random variable used for modelling a risk driver 
(e. g. a company) in this decision process is only a simple representative for a complex 
dynamic system that is usually too difficult to analyse from the risk manager’s view, e. g. 
because of bounded resources, time restrictions, asymmetric information, principal-agent 
problems etc.  
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Figure 4: current methods of risk management 

Since there are usually other banks and institutions in an economy that have also lent 
money to the regarded companies they will also follow the approach from figure 4 but use 
their own models, parameters and observations. This leads to an interesting structure 
containing large grids which connect the elements of the regarded economy – obligors, 
lenders and other important institutions that have a major influence on the overall stability 
of the system. 
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Figure 5: large grids in risk management situations 

Furthermore, because of the interaction between the elements of the economy as well as 
time differences between perception of changes, reactions and consequences of these 
reactions this is a highly dynamic system. 

So if we are concerned about the stability of the financial system on a large scale, our 
theoretical complexity considerations are interesting for the analysis of structural reasons 
for aggregated risks.  

The main problem e. g. for the financial supervision authorities which try to establish 
rules to stabilise the financial systems of large economies is that huge grids cannot be 
avoided in a liberal economy where nearly all agents like banks etc. are allowed to make 
contracts with each other. As a consequence, the financial supervision authorities have to 
concentrate on our paths B and C from figure 3: Either the local structure inside the large 
grids has to be very regular or the level of interaction between the elements inside the 
grids has to be restricted. Indeed, the financial supervision authorities move further into 
this direction as the development of supervisory regulations for financial companies have 
shown during the last ten years (cf. e. g. Basel Committee of Banking Supervision (2001) 
and the subsequent publications of the Bank of International Settlements). 

We think that the discussion of our complexity considerations in this very recent field of 
research particularly provides an interesting insight into the structural reasons for the 
necessity of supervisory and internal risk management rules that matches the usual 
arguments based on a pure probabilistic and correlation-oriented point of view. It must be 
pointed out here that our complexity considerations can be used as an additional tool 
together with the usual risk management techniques based on probabilities and risk 
models to improve the understanding of risky decision situations by an explicit structural 
analysis of the underlying sources of risk. In addition to that, the analysis of the 
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computational complexity in risk management decision situations is highly relevant for 
the development of adequate tools. To underline these arguments, we will focus on two 
special areas of risk management in the next sections. 

4.3. Credit risk 

Currently, one main focus in the management of credit risk in financial institutions is on 
the measurement and management of aggregated losses from lending money to a given set 
of n obligors (credit portfolio). The focus on aggregated losses comes from the fact that 
small losses are not threatening the bank’s existence (although they have a bad influence 
on the bank’s profits) whereas large losses can result in an insolvency of the bank itself.  

For the calculation of the probability distribution of aggregated losses from the portfolio, 
each obligor i ∈ {1,…,n} can modelled by a two-state variable Xi (so-called Bernoulli 
variable) that takes the value 1 if obligor i defaults at a fixed time horizon t, e. g. t = 1 
year (which means the bank loses the outstanding amount Li of money from i) and the 
value 0 if no default of obligor i occurs at the time horizon. Alternatively, one can also 
use an intensity-based approach (see e. g. Lando (1998), Duffie & Singleton (1999)) 
where Xi takes the value 1 if obligor i defaults within a fixed time horizon t. The 
probability of default pi describes the probability that Xi = 1. Of course, Prob (Xi = 0) = 1 
– pi. The potential loss amount for the bank Li from a default of obligor i is called Loss 
Given Default (LGD). The LGD is the part of the total amount Mi lent to obligor i which 
is not covered by collateral agreements etc. 

We now consider the bank from our example in section 4.2. which is holding a credit 
portfolio of n obligors and has no further risky investments. For the following 
considerations we assume that all Li are positive integer values. This is not critical from a 
real-world view, as we can transform a set of given real numbers into integer values by 
scaling the former using an appropriate factor (e. g. multiply amounts in dollars/cents by 
100 to obtain integer dollar values). To avoid trivial solutions, we assume Li ≠ Lj for i ≠ j 
and pi > 0 for all i ∈ {1,…,n}. 

If we assume a given integer value K expressing the bank’s ability to absorb the 
accumulated losses X = Σi Xi Li arising from defaults of obligors in the portfolio at the 
time horizon t, it is interesting to calculate the probability that the bank survives the time 
horizon t, denoted by Prob (X ≤ K). K is the default threshold of the bank, e. g. K = 
amount of bank’s equity (cf. the main idea of the Black-Scholes-Merton firm value model 
Black & Scholes (1973), Merton (1973)). This is a crucial question, particularly for the 
bank’s management, the bank’s employees and the banking supervision authorities. The 
following lemma shows that this problem is computationally intractable. 

(5) Lemma: The problem of calculating the bank’s survival probability given the data 
from its n obligors pi, Li for all i ∈ {1,…,n} and the bank’s default threshold K is NP-
hard. 

Proof: see appendix. 

(6) Corollary: The problem of calculating the bank’s default probability Prob (X > K) 
given its n obligors’ data pi, Li and the bank’s default threshold K is NP-hard. 
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Proof: Prob (X > K) = 1 - Prob (X ≤ K). The rest follows from Lemma (5). 

These two lemmata are interesting results, as we do not need any assumptions on the 
default probabilities or the dependence structure (e. g. correlations) between the Bernoulli 
variables to obtain a computationally difficult problem. Furthermore, we did not assume 
any specific portfolio credit risk model. Therefore the results are model-independent. 

We will now analyse a general problem of portfolio credit risk modelling using our 
complexity criterion to provide an insight into the fine structure of these problems. To 
achieve this, we will construct an input structure containing a general description of a 
credit portfolio. 

(7) Definition: A credit portfolio can be represented by an undirected graph G = (V,E) 
with vertex and edge evaluations where the vertex set V = {1,…,n} represents all 
obligors, and the edge set E is complete, i. e. contains all possible edges between each pair 
(i,j) of obligors i, j. There are functions p:V->R and L:V->N that map the associated 
default probability pi and the loss given default Li to each vertex (obligor). Furthermore, 
there is a function r:E->R mapping the strength of the dependency between the adjacent 
two vertices to each edge. 

An example for a small portfolio containing four obligors is shown in figure 6. 

obligor 1
p1 = 0.02
L1 = 1000

obligor 2
p2 = 0.005
L2 = 100

obligor 4
p4 = 0.01
L4 = 500

obligor 3
p3 = 0.015
L3 = 900

r14=0.2 r23=0.22

r12=0.25

r34=0.4

r13=0.1

r24=0.3

 

Figure 6: credit portfolio modelled by graph elements 

If we are interested in portfolio credit risk measurement or management based on 
quantitative methods using all the given default probabilities, dependencies between 
obligors and loss amounts, we have to construct algorithms based on the graph G from 
definition (7). This is particularly true for all measurement (and management) methods 
that base on the full probability distribution of aggregated losses (cf. e. g. Lemma (5) 
above). 

(8) Proposition: According to our complexity criterion, any problem of portfolio credit 
risk measurement that requires the computation of the full probability distribution of 
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aggregated losses from input data which is based on the graph structure specified by 
definition (7) is a complex problem. 

Some observations supporting this proposition: 

The tree width of the input graph G for the portfolio credit risk management algorithm A 
is n-1 since G is a complete graph. So we observe a large grid structure as the first 
ingredient of complexity since the tree width of G cannot be bounded for n → ∞. 

The second observation is that we usually have local irregularities concerning the vertices 
of the graph. Each vertex i ∈ V can have a distinct default probability p (i) = pi and an 
arbitrary (but natural number) potential loss amount L (i) = Li. This is quite realistic since 
banks lend different amounts of money to many obligors of different quality (concerning 
their default probability). Of course, in real-world applications the cardinality of the 
regarded set of different default probabilities used in calculations based on graph G is 
typically small (e. g. ≤ 18) due to the fact that the probabilities have to be estimated from 
empirical observation of defaults in a small number of (so-called rating) classes 
containing obligors of similar quality. But this is not limiting our observation of local 
irregularities inside our graph as long as there are different LGD values Li and at least two 
different default probabilities pi. This assumption should compatible with nearly all real-
world credit portfolios. 

Looking at the flow of information along the edges of the graph G we observe that the 
flow of information between two obligors representing their dependency causes 
computational difficulties unless r is a constant function satisfying r (e) = 0 for all edges e 
∈ E. In this case, we can remove all edges from our input graph and obtain a less difficult 
problem, since we do not only restrict the flow of information between different obligors 
but we also reduce the tree width of the input graph to 0 since there are no grids left. 
Thus, there are only independent obligors. Many portfolio credit risk problems are easier 
to handle in this setting.  

To illustrate this fact, imagine we construct an algorithm C which simulates the state of 
all obligors in the portfolio at the end of the next year using the given input graph G by 
assigning the value 0 to each vertex if the corresponding obligor defaults in a simulation 
run, and the value 1 otherwise. In the trivial case r (e) = 0 for all edges e the algorithm C 
can handle the decision of assigning the value 0 or 1 to a fixed vertex i ∈ V just by using 
the associated default probability so there is no additional computational cost beyond 
simulating each obligor in each simulation run. But if there is at least one e ∈ E having r 
(e) > 0 then there will be an additional computational requirement to handle this 
dependency. And in the case of a large grid structure containing such non-trivial edge 
valuations in conjunction with non-trivial vertices (i. e. non-constant default probabilities 
and non-constant LGD values) we expect computationally difficult problems. 

Note that we explicitly do not restrict the dependence structure between two obligors to be 
measured by correlations as proposed in most current real-world applications. The 
dependence structure can also be modelled by copula functions or other concepts. For our 
complexity criterion, it is sufficient that r has a non-trivial structure, i. e. r is not 
constantly zero.  
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Summarising all observations about the graph used for modelling the credit portfolio 
problem structure, we have found that all three elements of complexity from our criterion 
are present inside the graph G. Therefore, we cannot expect to find an efficient (i. e. 
polynomial time) algorithm A for portfolio credit risk measurement which produces exact 
results based on the full probability distribution of aggregated losses which are calculated 
using given the input structure defined by the above graph G unless the problem class P = 
problem class NP. 

We want to point out that this is not a rigorous mathematical proof for (8). But it provides 
a valuable insight into the fine structure of all portfolio credit risk problems concerning 
measurement and management. The existing literature usually focuses on data problems 
and specific model assumptions, e. g. for the obligor’s quality from the bank’s 
perspective, default probabilities or dependencies, to justify a certain calculation 
procedure or algorithm. Many studies focus on economic or mathematical modelling of 
defaults, but not on computational aspects which are mission-critical for effective and 
accurate real-world portfolio credit risk management. We have shown above that even 
without assuming a specific model for obligors’ dependencies, obligor data etc. we cannot 
expect to find a polynomial time (in the number of the obligors) algorithm for measuring 
portfolio credit risk unless the problem class P = problem class NP. As a consequence, 
portfolio credit risk management based on quantitative portfolio credit risk measurement 
is a complex task. 

Our proposition (8) is also supported by the fact that until now there is no known 
polynomial time algorithm for quantitative portfolio credit risk measurement based on the 
full probability distribution of losses calculated using the data modelled by our graph. All 
existing methods use approximation schemes or randomised algorithms to avoid the 
complexity. We will now apply the complexity management guidelines derived from our 
criterion to see how we can reduce the complexity of the problem by restricting the inputs. 
By considering some details from selected portfolio credit risk measurement models we 
will see that these guidelines are implicitly used when applying these models. 

The first method derived from our criterion for complexity reduction of portfolio credit 
risk problems is to break up the large dependence structure between defaults of different 
obligors i,j. If we consider pairwise independent obligors, many problems will become 
easier to solve since we do not allow a large grid structure in our input graph G for a 
certain (hypothetical) portfolio credit risk measurement algorithm A.  

Of course, for most real-world portfolios we cannot assume the obligors to be 
independent from each other. But the idea of breaking up the dependence structure can 
even be valuable in settings where the obligors are dependent. For example, if we assume 
the default probabilities pi to be conditionally independent given a certain state of the 
obligors’ common economy which is reflected e. g. by the state of a fixed number of 
macro-economic indicators influencing all default probabilities the same way, we obtain 
computationally (and statistically) easier calculations. To illustrate this fact, consider e. g. 
that all default probabilities pi are linked to a single macro-economic factor according to 
the equation pi = mi * Z where mi is the mean default probability of obligor i and Z is a 
random variable having a mean (or expectation) equal to 1 that scales all default 
probabilities into the same direction depending on the current state of the economy. Z 
describes a common macro-economic driver of default probabilities because they rise in a 
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recession and drop in a boom of the modelled economy in which the obligors operate. If 
we assume this kind of obligor dependency modelling we will at least obtain 
computationally easier calculations given a fixed state of the economy since the input 
graph G for the calculation algorithm A does not explicitly contain large grids. Instead, 
the respective algorithm A has to be called many times using different parameters (i. e. pi) 
which are determined by the states of the economic indicators to incorporate the default 
dependencies between obligors. Afterwards, the output from each run of the regarded 
algorithm A has to be processed to obtain a final result that includes the necessary 
dependencies. In current real-world models for portfolio credit risk measurement this is a 
common method of complexity reduction. For the CreditRisk+ model (cf .CreditSuisse 
Financial Products (1997)) this method is the key aspect of modelling default 
dependencies. Due to this aspect (and further concepts that reduce the complexity, see 
below), the analytical approximation of the loss probability distribution can be performed 
very efficiently. In Wilson’s model (cf. e. g. Wilson (1997a, 1997b)) the state of the 
economy is simulated by a Monte-Carlo-Algorithm in “outer simulations“. The default 
probabilities and other probabilities describing the development of the obligors’ credit 
quality (so-called migration probabilities) are adapted according to the results of these 
outer simulation runs, and afterwards each single obligor can be simulated by a second 
Monte-Carlo-Algorithm in an “inner simulation” using the adapted (conditional) 
probabilities. There are no explicit dependencies to be handled in each inner simulation 
run since the dependencies between defaults of different obligors are covered by the 
adaptation of the obligors’ individual probabilities according to the outer simulations. 

If we look at the dependence structure modelled by an input graph G’ after introducing a 
common risk factor which is used as a linking element between obligors, we observe that 
the tree width of the resulting graph G’ is significantly lower than the tree width of our 
original graph G. Figure 7 shows an example. 

obligor 1
p1 = 0.02
L1 = 1000

obligor 2
p2 = 0.005
L2 = 100

obligor 4
p4 = 0.01
L4 = 500

obligor 3
p3 = 0.015
L3 = 900

r14=0.2 r23=0.22

r12=0.25

r34=0.4

r13=0.1

r24=0.3

obligor 1
p1 = 0.02
L1 = 1000

common
risk

factor

obligor 2
p2 = 0.005
L2 = 100

obligor 3
p3 = 0.015
L3 = 900

obligor 4
p4 = 0.01
L4 = 500

r1

r2

r3

r4

graph G
tree width (G) = 3

graph G'
tree width (G') = 1

 

Figure 7: complexity reduction by introduction of a common risk factor 
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It is important to see that the tree width of the resulting graph G’ is bounded by 1 whereas 
the tree width n-1 of the original graph G is not bounded for n→∞. 

Of course, the underlying risk measurement algorithm A has to be changed according to 
the new input structure G’, but we can at least expect lower computational complexity due 
to the reduced size of the embedded grids inside the input structure. 

This observation is not only relevant for portfolio credit risk measurement but also for 
many other methods of asset valuation or risk management, consider e. g. the Capital 
Asset Pricing Model (CAPM) as a one-factor valuation approach (see e. g. Sharpe (1963, 
1964) for details). 

The second way of complexity reduction proposed by our criterion is to enforce a 
homogeneous structure inside the given graph G. In the context of portfolio credit risk 
measurement this is e. g. the case if all obligors share common properties, i. e. if there is a 
constant LGD value L = Li = const and/or a fixed default probability p = pi = const for 
each obligor i. We expect less computational complexity in this case since we do not have 
to respect certain individual properties of the obligors when processing the graph G by an 
algorithm. An example for such a complexity reduction principle used in a portfolio credit 
risk model can be found in CreditRisk+. The obligors are clustered into homogenous 
classes according to their LGD values. The classes are generated by choosing an 
appropriate norm exposure L (the CreditRisk+ model proposes L = maxi {Li} / 100). 
Afterwards, dividing each individual LGD value Li by the norm exposure L and rounding 
up the resulting value to the nearest next integer number j yields the corresponding class 
number j for each obligor. The resulting classes contain obligors having quite similar or 
even equal LGD values. The advantage of this classification procedure is that the Poisson 
approximation used to calculate the loss probability distribution in the CreditRisk+ 
algorithm can be performed on a significantly smaller number of homogenous classes 
instead on each obligor. Together with a conditional independency between obligors (cf. 
our above remarks) this yields a very fast approximation scheme. 

Hopefully, these insights into the complexity reasons and complexity reduction principles 
can support the invention of “second generation” portfolio credit risk measurement 
models yielding a better computational performance than current simulation models and 
avoid other problems of analytical approaches, e. g. the instability of the CreditRisk+ 
recursion in some parameter settings when working with fixed arithmetic precision (i. e. 
usual floating point data types on a standard computer). 

Now we will return to our bank from our illustrative example from section 4.2. Assume 
that the bank uses a portfolio credit risk model for the calculation or approximation of the 
full portfolio loss distribution. A common downside risk measure used for quantification 
of portfolio credit risk given a portfolio’s aggregated loss distribution is the Credit-Value-
at-Risk. 

(9) Definition: Given a probability level α∈(0,1) and a cumulative discrete probability 
distribution F describing the cumulative probability of aggregated losses in the credit 
portfolio the Credit-Value-at-Risk at the level α is given by F-1(α) - µ (F), where F-1(α) is 
the α-percentile of F and µ (F) is the mean/expectation of F. 
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Now if a portfolio manager in our sample bank wants to optimise the bank’s risk-return 
profile using the Credit-Value-at-Risk and the expected return from the portfolio, he will 
build an optimisation problem of the following type: 

 

(10) Problem: 

max Σi ri yi 

with respect to Σi wi yi ≤ K 

yi ∈ [0, Li] rational numbers 

ri, wi > 0 rational numbers 

The ri values characterise the rate of return for obligor i from the bank’s perspective and 
the wi values are the “capital weights” that have to be respected for each unit of net risk 
(LGD) held by the bank in its portfolio. Summing up all capital weights multiplied by the 
amount of risky LGD we obtain the aggregated amount of risk which can be compared 
with a given bound K, consider e. g. the bank’s given equity K (cf. our derivation of the 
problem stated in lemma (5)). Note that this is the way banking supervision authorities 
restrict the lending capacities of banks by imposing capital weights wi on credit granting 
activities and setting an individual supervisory capital limit K for each bank. Of course, a 
bank can use internal risk weights based on Credit-Value-at-Risk calculations for its own 
risk-return management purposes. Usually, internal risk management figures are assumed 
to describe the bank’s economic situation much better than the supervisory calculations. 
However, for our considerations, it is sufficient to know capital weights wi for each 
obligor and a limit K. 

The yi are the decision variables for the portfolio manager. In our example, the value of yi 
is determined by the total amount of money Li that was lent to obligor i, i. e. yi ∈ [0,Li]. If 
yi < Li then the part Li - yi of the amount lent to obligor i has to be transferred from our 
bank to a third party risk buyer, e. g. an insurance company. 

We require all variables to be rational numbers in problem (10) because the usual Turing 
machine computing model does not allow real-value variables using arbitrary precision. 
But it is not limiting our results since this is a usual assumption for proofs of complexity 
in all areas of application.  

The corresponding decision problem for (10) is: 

(11) Problem: Are there numbers yi ∈ [0, Li] for given natural numbers R and K such that 

Σi ri yi ≥ R and Σi wi yi ≤ K 

yi ∈ [0, Li] rational numbers 

ri, wi > 0 rational numbers 
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The economic interpretation of problem (11) is that we search for a portfolio structure 
satisfying a minimum return R and a risk limit K. An interesting result concerning this 
problem and the related optimisation problem (10) is the following: 

(12) Lemma: If the yi ∈ [0, Li] are integer variables then problem (11) is NP-hard. 

Proof: see appendix. 

Since we did not assume any specific risk measure for the wi variables in lemma (12) and 
its proof, we know that integer optimisation of credit portfolios with respect to 
supervisory capital weights and limits is NP-hard. The same holds for Credit-Value-at-
Risk based capital weights and limits. 

We know that dynamic programming yields solutions for knapsack-like problems in 
pseudo-polynomial time. This will work if the returns and the capital weights in a 
portfolio do not influence each other like the sizes and the values of the items in the 
original INTEGER KNAPSACK problem.  

However, if the capital weights wi themselves depend from each element yi in a solution, 
i. e. wi = f(y1, y2,…, yn) for each i and f is a non-linear, non-convex function, which is the 
case if Credit-Value-at-Risk based capital weights are used (for an overview of the 
difficult structure of Value-at-Risk functions see e. g. Pflug (2000)), then the usual 
dynamic programming approach which constructs a solution by evaluating intermediate 
results will not work at least for some instances of the problems (10) and (11). This is due 
to the fact that we cannot construct an optimal partial solution without knowing the final 
value of all yi variables since all yi variables influence all capital weights. 

The usual dynamic programming approach constructing an optimal solution using “step 
by step” principles cannot be used to solve every possible instance of problems (10) and 
(11) in pseudo-polynomial time if the capital weights are determined by Credit-Value-at-
Risk calculations. 

The same holds if we use risk-adjusted return figures instead of constant coefficients ri. 

However, for real-world portfolios there are heuristic approaches to solve problems (10) 
or (11) approximately within reasonable (i. e. non-exponential) time. See e. g. 
Schlottmann & Seese (2001, 2002) for related computational results and further details. 

We have shown that some credit risk problems of high relevance for real-world portfolio 
management are difficult to solve, i. e. NP-hard. By an analysis of credit portfolio 
modelling using our complexity criterion we have identified structural reasons for high 
complexity in this area of application. The complexity management guidelines derived 
from our complexity criterion are compatible with the methods applied within existing 
portfolio credit risk models to achieve lower computational complexity bounds. 

In the field of stock portfolio management which is related to our considerations about 
credit portfolio optimisation in problem (11) there are some interesting results concerning 
our complexity criterion in the study of Kao, Nolte & Tate (2000). The goal of their study 
is to analyse the computational limits that occur in the case of two or more investment 
alternatives (stocks) S1, S2, …, Sk if we ask for the optimal allocation vector x = (x1, .., xk) 



24 

of these assets given a certain type of utility function for the regarded investor. Each stock 
has an associated discrete probability distribution describing the probability of stock 
returns using the following definition: 

(13) Definition: For a given real number µ > 0 and integers m1, m2 satisfying m1 < m2 we 
define m = m2 – m1 + 1 and ∆ = {j µ : j = m1,..., m2}. There are k ∈ N investment 
alternatives (stocks) S1,…,Sk. The returns of each stock i can only take values from ∆, and 
Si (β) denotes the probability that the (ex ante) return of stock i is equal to β ∈ ∆. For 
each stock i we know the complete probability function of its returns. 

For the description of the investor’s utility function or investment style, the following 
definition is proposed: 

(14) Definition: Given is a desired target return α. Using the portfolio data from 
definition (13), 

RAb(α, x) denotes the smallest probability that the return of the asset allocation vector x = 
(x1, .., xm) is at most α% over all joint distributions for S1,…,Sk 

RAw(α, x) denotes the largest probability that the return of the asset allocation vector x = 
(x1, .., xm) is at most α% over all joint distributions for S1,…,Sk 

RAa(α, x) denotes the average probability that the return of the asset allocation vector x = 
(x1, .., xm) is at most α% over all joint distributions for S1,…,Sk 

AGb(α, x) denotes the largest probability that the return of the asset allocation vector x = 
(x1, .., xm) is at least α% over all joint distributions for S1,…,Sk 

AGw(α, x) denotes the smallest probability that the return of the asset allocation vector x 
= (x1, .., xm) is at least α% over all joint distributions for S1,…,Sk 

AGa(α, x) denotes the average probability that the return of the asset allocation vector x = 
(x1, .., xm) is at least α% over all joint distributions for S1,…,Sk. 

Due to Kao et al. (2000), RA describes a risk-averse investor who prefers minimisation of 
loss over maximisation of maximising profits while AG describes an aggressive investor 
who has the opposite preferences. In this study, there are three subtypes for each of these 
two investment styles depending on the investor’s choice which probability is to 
determine the investment decision: A best-case risk-averse investor minimises RAb by 
choosing an appropriate x, while a worst-case risk-averse investor minimises RAw, and an 
average-case risk-averse investor minimises RAa. In contrast, an aggressive investor will 
choose x such that RAb is maximised if he is best-case, such that RAw is maximised if he 
is worst-case or such that RAa is maximised otherwise. 

Based on the above definitions the following result could be proved: 

(15) Theorem: Given S1, S2, and α, an optimal asset allocation x for a worst-case risk-
averse investor minimizing RAw(α,x) can be computed in O(m2 log m) arithmetic 
operations.  



25 

In the proof of theorem (15) Kao et al. use a binary tree that describes the contents of 
contingency tables for the joint probability distributions of the returns from the two 
stocks. Each node of the constructed binary tree is labelled with the contents of two 
variables that represent an intermediate result during the search for the optimal x that 
minimises RAw(α,x). This tree structure is essential for the lower computational 
complexity bound compared to a trivial algorithm requiring O(m3) arithmetic operations. 

Due to mathematical properties (dualities) concerning the relationships between the 
different investor types, the computational complexity stated in theorem (15) also holds 
for the best-case risk-averse, the worst-case aggressive and the best-case aggressive 
investor. However, this is not the case for the average risk-averse or aggressive investor, 
since these average cases ask for the complete subset of contingency tables describing the 
joint distribution of the two stocks’ returns that satisfies the minimum (maximum) 
conditions for RAa(α, x) (AGa(α, x)). There is no known algorithm solving this problem 
in polynomial time (measured by m). See Kao et al. (2000) for a formal proof and a 
randomised algorithm for an approximation of the average cases’ optimal solution. 

We have to remind here that all these results belong to the two stock (k = 2) case and all 
the above complexity bounds are related to m, the dimension of the probability functions 
of possible returns. Remind that even in the two stock case, we know no polynomial time 
algorithm for the average investor’s problem.  

For k > 2 stocks, the following theorem was proved in Kao et al. (2000). 

(16) Theorem: The existence of a greedy algorithm for finding the optimal asset 
allocation x for k > 2 stocks and a worst-case investor implies P = NP. 

The proof of theorem (16) uses a reduction of a variant of the 3-DIM-MATCHING 
problem, which is known to be NP-complete (cf. e. g. “SP1” in Garey & Johnson (1979), 
p. 221). 

Theorem (16) implies that unless P = NP we cannot expect to find a deterministic 
algorithm which exactly solves the k stock portfolio problem for k > 2 in polynomial time 
(still measured by m). 

The results by Kao, Nolte & Tate show that even in a quite simple economic setting, 
where only a small number of stocks and simple investment strategies are considered and 
parameter estimation and prediction problems are absent, the resulting optimisation 
problems are very difficult from the perspective of computational complexity. From the 
viewpoint of our complexity criterion, the absence of grids plays an essential role in 
obtaining lower computational bounds for some problems since Kao et al. explicitly use 
tree structures to reduce the complexity of some calculations.  

4.4. Operational risk 

Operational risk (abbreviated by OpRisk) for financial or industrial companies (or other 
organisations) is a synonym for unexpected losses of profits or cash flows caused by 
failures of management or internal controls, changing markets, products, services, 
technologies, human error and/or fraud, failures of information systems or by 
unmanageable events and complex operations (see e. g. Marshall (2001) or King (2001) 
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for details). It is currently one of the most important and most difficult management 
problems for many companies throughout the world. 

The management of OpRisk requires solutions for many NP-hard problems, e. g. capital 
market prediction, financial risk management, optimisation problems, scheduling, 
operations management, facility management, total quality management, reliability 
engineering, statistical process control, control of non-linear dynamical systems and 
complex organisations. Large grids and irregular flow of information cause high 
complexity in many of these problems as indicated in the above sections, so our criterion 
is of implicit relevance concerning this point. 

Furthermore, there are strong dependencies between staff, process elements, information 
systems, external markets and other organisational elements. These structures, their 
connections and their dynamics lead to a more complex overall management problem. In 
a highly connected organisation a failure of a single element or a wrong decision can 
already result in huge losses and often in other unpredictable consequences, cf. the 
consequences of September 11, 2001.6 Therefore, we want to point out that our 
complexity criterion is explicitly applicable here. An operational risk manager has to keep 
an eye on the grid size of the organisation (smaller embedded grids are preferable), on the 
regularities of the organisational elements (more regular patterns are more manageable) 
and on the dependencies between organisational elements (less pairwise dependencies 
lead to lower overall risk). Of course, these general considerations cannot be perfectly 
applied to each real world organisational element. However, they provide an explicit 
modelling and understanding of complexity in operational risk management without 
assuming too much data requirements. This is very important since in real world 
operational risk management the data that could be used as a basis for choosing 
distributions of risk factor variables Xi and for estimation of parameters of these 
distributions is usually missing or at least the history of collected data is too short and 
cannot be extended because the events that are to be analysed occur very seldom. 

Due to these problems concerning the necessary databases for the usage of sophisticated 
stochastic models, simple non-structural, macro-level numbers like the company’s total 
profit, turnover etc. are currently used as proxies for quantitative operational risk 
measures. But since there is a strong need for explicit measures of organisational 
complexity to allow better quantitative evaluation of operational risk, our grid criterion, 
particularly the well-defined tree width of embedded grids in the organisational structure, 
is obviously of high relevance in this context. It can be used to evaluate different 
organisations from a micro-level structural approach. So our considerations about the 
tiling problem and the three derived paths to manage complexity are also very useful here. 

We think that it is one of the areas where a synergy from parametric and dynamic 
complexity together with other disciplines could be helpful to understand the appearing 
problems and to find possible solutions. 

 

                                                 
6 E. g. whole companies were destroyed by the terrorist attacks that hit two single, but very important 
buildings. 
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CONCLUSION 

We have provided a structural criterion of complexity in this paper which is important in 
different theoretical and application-oriented contexts. Starting from computational 
complexity we have analysed topological graph theory problems to observe how the 
presence of large grids inside the input structures influences the complexity. A main 
conclusion is that graphs without large grids are closely related to trees, and restricting the 
input for computational problems to such tree-like structures leads to non-complex 
problems. Therefore, we have found a first way to make complex problems more tractable 
by restricting their structure. For problems where the grid sizes cannot be bounded we 
have identified two other possibilities to avoid high complexity: Either the local structure 
inside the large grids has to be very regular, or the flow of information between the grid 
elements has to be restricted. Otherwise, if a problem is not restricted in at least one of 
these three structural criteria the problem will be complex (i. e. NP-complete). 

After our considerations about graphs and related problems we have analysed the 
relationship between the structure of dynamic systems and their complexity. It has been 
shown that dynamic systems containing recursive iterations of a single non-linear function 
can lead to complex problems, even if the recursive iterations are based on quite simple 
loops. This is important for many market-driven dynamic systems like capital markets. 
We found indications that our complexity criterion is useful to manage complexity in 
these areas, too, since our analysis of the iteration steps in simple dynamic systems has led 
to the discovery of large grids inside the communication graphs of the regarded variables’ 
contents. This is a basis for analysing more complicated dynamic systems by examining 
the interaction between their components. 

We have considered the presence of large grids and the resulting complexity of problems 
in financial applications like dynamic pricing in auctions or capital markets, and risk 
management. For portfolio credit risk management, we have shown that selected 
problems in portfolio credit risk management are NP-hard or NP-complete and used our 
complexity criterion to provide structural reasons for the complexity of credit portfolio 
problems. Moreover, we have pointed out that our criterion is implicitly used in many 
real-world credit risk applications to make complex problems tractable. In the very recent 
field of Operational risk management there is a need for structural complexity measures 
and complexity management guidelines, so our criterion is of high relevance in this 
context, too. 

Besides the results and indications that we have discussed, there are still many open 
questions. For instance, there is a need for further empirical validation of our concepts in 
real-world applications. The proposed grid-oriented criterion can lead to tools which 
support complexity engineering of real life problems if the corresponding parameters 
influencing the complexity can be controlled, e. g. by regarding designs of smaller grid 
sizes or with more regular patterns, or by using organisational structures which avoid high 
complexity in our sense. Finally, we think that we have contributed an idea that makes a 
difference in understanding of complexity.  
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APPENDIX 

Proof of Lemma (5): 

We are interested in the probability Prob (X ≤ K) that the bank does not default at the 
time horizon. Since X = Σi Xi Li this means that we have to determine all possible subsets 
A’ ⊆ {L1, L2,…,Ln} satisfying Σa∈A’ La ≤ K since Prob (X ≤ K) is the sum of the 
probabilities of all possible states for the Bernoulli variables leading to possible 
aggregated losses ≤ K. 

From a decision problem view this is at least as hard as solving the following problem at 
most Σi Li times for each k ∈ {1,…, Σi Li}: 

(*) Problem: Given is the set {L1, L2, …, Ln} and a fixed integer k. Is there a subset A’ ⊆ 
{L1, L2, …, Ln} satisfying Σa∈A’ La = k? 

But this decision problem is NP-complete since it we can construct an equivalent instance 
of this problem from any given instance of the SUBSET SUM problem (“SP13”, cf. 
Garey & Johnson (1979), p. 223): 

SUBSET SUM Problem: Given is a finite set A, an integer weight s(a) > 0 for each 
element a ∈ A and an integer b. Is there a subset A’ ⊆ A satisfying Σa∈A’ s(a) = b? 

We can transform an instance of SUBSET SUM into an equivalent instance of problem 
(*) by using a polynomial time calculable 1-1 function f: A -> N that maps a subsequent 
natural number to each element a ∈ A starting from f(a) = 1 for the first element a ∈ A. 
We set n = |A|. Choosing Lf(a) = s(a) for each a ∈ A and setting k = b yields an equivalent 
instance of (*). By construction of f and the variables Lf(a) and k, A’ is a solution for 
SUBSET SUM if and only if A’ a solution of problem (*) and vice versa. 

Since our decision problem (*) is a restricted version of our default probability calculation 
problem, the latter problem is also NP-hard.  

q. e. d. 

Proof of Lemma (12): 

Obviously for integer variables yi, problem (11) is in NP since a non-deterministic 
algorithm can guess a solution for the yi variables and verify it in polynomial time. 

Now consider an instance of the following problem (“MP10”, cf. Garey & Johnson 
(1979), p. 247): 

INTEGER KNAPSACK Problem: Given is a finite set U, an integer size s(u) > 0, an 
integer value v(u) > 0 for each element u ∈ U and positive integers S,V. Is there an 
assignment of a non-negative integer c(u) to each u ∈ U such that Σu∈U c(u) s(u) ≤ S and 
Σu∈U c(u) v(u) ≥ V? 
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We can construct an equivalent instance of the decision problem (11) for a given 
INTEGER KNAPSACK problem instance by using a polynomial time calculable 1-1 
function f: U -> N that assigns a subsequent natural number to each element u ∈ U 
starting from f(u) = 1 for the first element u ∈ U and by setting n = |U|, ri = v(f-1(i)), wi = 
s(f-1 (i)), R = V, K = S.  

The only problem is to determine an upper bound Li for each obligor i ∈ {1,...,n}, and 
therefore an upper bound for yi such that c(f-1(i)) is a solution of the INTEGER 
KNAPSACK problem instance if and only if yi is a solution of problem (11).  

To obtain an upper bound for Li (or equivalently c(u)) we look at the inequality Σu∈U c(u) 
s(u) ≤ S and consider the smallest possible value for s(u) on the left hand side. In the 
relevant case s(u) = 1 this inequality can only be satisfied if c(u) is bounded by S, i. e. c(u) 
≤ S for all u ∈ U. For s(u) > 1, c(u) must be < S to satisfy this inequality. 

Therefore, if we choose Li = S for all i and consider the above transformation of the 
variables, we have found a polynomial time reduction from INTEGER KNAPSACK to 
our problem (11). Since INTEGER KNAPSACK is known to be NP-complete, our 
problem (11) is NP-hard. Moreover, problem (11) is in NP, therefore it is NP-complete.  

q. e. d. 
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