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Abstract.  

Soft computing is an association of computing methodologies that 
includes fuzzy logic, neuro-computing, evolutionary computing, 
and probabilistic computing. After a brief overview of Soft 
Computing components, we will analyze some of its most 
synergistic combinations. We will emphasize the development of 
smart algorithm-controllers, such as the use of fuzzy logic to control 
the parameters of evolutionary computing and, conversely, the 
application of evolutionary algorithms to tune fuzzy controllers. We 
will focus on three real-world applications of soft computing that 
leverage the synergism created by hybrid systems. 

1 SOFT COMPUTING OVERVIEW 

Soft computing (SC) is a term originally coined by Zadeh to denote 
systems that “… exploit the tolerance for imprecision, uncertainty, 
and partial truth to achieve tractability, robustness, low solution 
cost, and better rapport with reality" [1]. Traditionally SC has been 
comprised by four technical disciplines.  The first two, probabilistic 
reasoning (PR) and fuzzy logic (FL) reasoning systems, are based 
on knowledge-driven reasoning. The other two technical 
disciplines, neuro computing (NC) and evolutionary computing 
(EC), are data-driven search and optimization approaches [2]. 
Although we have not reached a consensus regarding the scope of 
SC or the nature of this association [3], the emergence of this new 
discipline is undeniable [4].  

This paper is the reduced version of a much more extensive 
coverage of this topic, which can be found in [5]. 

2 SC COMPONENTS AND TAXONOMY  

2.1 Fuzzy Computing 

The treatment of imprecision and vagueness can be traced back to 
the work of Post, Kleene, and Lukasiewicz, multiple-valued 
logicians who in the early 1930's proposed the use of three-valued 
logic systems (later followed by infinite-valued logic) to represent 
undetermined, unknown, or other possible intermediate truth-values 
between the classical Boolean true and false values [6]. In 1937, the 
philosopher Max Black suggested the use of a consistency profile to 
represent vague concepts [7]. While vagueness relates to ambiguity, 
fuzziness addresses the lack of sharp set-boundaries. It was not until 
1965, when Zadeh proposed a complete theory of fuzzy sets (and its 
isomorphic fuzzy logic), that we were able to represent and 
manipulate ill-defined concepts [8]. 
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  In a narrow sense, fuzzy logic could be considered a 
fuzzification of Lukasiewicz Aleph-1 multiple-valued logic [9].  In 
the broader sense, however, this narrow interpretation represents 
only one of FL’s four facets [10].  More specifically, FL has a 
logical facet, derived from its multiple-valued logic genealogy; a 
set-theoretic facet, stemming from the representation of sets with 
ill-defined boundaries; a relational facet, focused on the 
representation and use of fuzzy relations; and an epistemic facet, 
covering the use of FL to fuzzy knowledge based systems and data 
bases. A comprehensive review of fuzzy logic and fuzzy computing 
can be found in [11].  

Fuzzy logic gives us a language, with syntax and local semantics, 
in which we can translate qualitative knowledge about the problem 
to be solved. In particular, FL allows us to use linguistic variables 
to model dynamic systems. These variables take fuzzy values that 
are characterized by a label (a sentence generated from the syntax) 
and a meaning (a membership function determined by a local 
semantic procedure). The meaning of a linguistic variable may be 
interpreted as an elastic constraint on its value. These constraints 
are propagated by fuzzy inference operations, based on the 
generalized modus-ponens. This reasoning mechanism, with its 
interpolation properties, gives FL a robustness with respect to 
variations in the system's parameters, disturbances, etc., which is 
one of FL's main characteristics [12].  

2.2 Probabilistic Computing  

Rather than retracing the history of probability, we will focus on the 
development of probabilistic computing (PC) and illustrate the way 
it complements fuzzy computing. As depicted in Figure 1, we can 
divide probabilistic computing into two classes: single-valued and 
interval-valued systems.  

Bayesian belief networks (BBNs), based on the original work of 
Bayes [13], are a typical example of single-valued probabilistic 
reasoning systems. They started with approximate methods used in 
first-generation expert systems, such as MYCIN’s confirmation 
theory [14] and PROSPECTOR’s modified Bayesian rule [15], and 
evolved into formal methods for propagating probability values 
over networks [16-17]. In general, probabilistic reasoning systems 
have exponential complexity, when we need to compute the joint 
probability distributions for all the variables used in a model.  
Before the advent of BBNs, it was customary to avoid such 
computational problems by making unrealistic, global assumptions 
of conditional independence. By using BBNs we can decrease this 
complexity by encoding domain knowledge as structural 
information: the presence or lack of conditional dependency 
between two variables is indicated by the presence or lack of a link 
connecting the nodes representing such variables in the network 
topology.  For specialized topologies (trees, poly-trees, directed 
acyclic graphs), efficient propagation algorithms have been 
proposed by Kim and Pearl [18]. However, the complexity of 



multiple–connected BBNs is still exponential in the number of 
nodes of the largest sub-graph. When a graph decomposition is not 
possible, we resort to approximate methods, such as clustering and 
bounding conditioning, and simulation techniques, such as logic 
samplings and Markov simulations. 

Dempster-Shafer (DS) systems are a typical example of interval-
valued probabilistic reasoning systems. They provide lower and 
upper probability bounds instead of a single value as in most BBN 
cases.  The DS theory was developed independently by Dempster 
[19] and Shafer [20].  Dempster proposed a calculus for dealing 
with interval-valued probabilities induced by multiple-valued 
mappings.  Shafer, on the other hand, started from an axiomatic 
approach and defined a calculus of belief functions. His purpose 
was to compute the credibility (degree of belief) of statements made 
by different sources, taking into account the sources’ reliability.  
Although they started from different semantics, both calculi were 
identical. 

Probabilistic computing provides a way to evaluate the outcome 
of systems affected by randomness (or other types of probabilistic 
uncertainty). PC’s basic inferential mechanism - conditioning - 
allows us to modify previous estimates of the system's outcome 
based on new evidence.    

2.2.1 Comparing Probabilistic and Fuzzy Computing.  

In this brief review of fuzzy and probabilistic computing, we would 
like to emphasize that randomness and fuzziness capture two 
different types of uncertainty. In randomness, the uncertainty is 
derived from the non-deterministic membership of a point from a 
sample space (describing the set of possible values for the random 
variable), into a well-defined region of that space (describing the 
event). A probability value describes the tendency or frequency with 
which the random variable takes values inside the region. In 
fuzziness, the uncertainty is derived from the deterministic but 
partial membership of a point (from a reference space) into an 
imprecisely defined region of that space.  The region is represented 
by a fuzzy set.  The characteristic function of the fuzzy set maps 
every point from such space into the real-valued interval [0,1], 
instead of the set {0,1}. A partial membership value does not 
represent a frequency.  Rather, it describes the degree to which that 
particular element of the universe of discourse satisfies the property 
that characterizes the fuzzy set. In 1968, Zadeh noted the 
complementary nature of these two concepts, when he introduced 
the probability measure of a fuzzy event [21].  In 1981, Smets 
extended the theory of belief functions to fuzzy sets by defining the 
belief of a fuzzy event [22]. These are the first two cases of hybrid 
systems illustrated in Figure 1. 

2.3 Neural Computing  

The genealogy of neural networks (NN) could be traced back to 
1943, when McCulloch and Pitts showed that a network of binary 
decision units (BDNs) could implement any logical function [23]. 
Building upon this concept, Rosenblatt proposed a one-layer 
feedforward network, called a perceptron, and demonstrated that it 
could be trained to classify patterns [24-26]. Minsky and Papert 
[27] proved that single-layer perceptrons could only provide linear 
partitions of the decision space. As such they were not capable of 
separating nonlinear or non-convex regions. This caused the NN 
community to focus its efforts on the development of multilayer 
NNs that could overcome these limitations. The training of these 
networks, however, was still problematic. Finally, the introduction 
of backpropagation (BP), independently developed by Werbos [28], 

Parker [29], and LeCun [30], provided a sound theoretical way to 
train multi-layered, feed-forward networks with nonlinear activation 
functions.  In 1989, Hornik et al. proved that a three-layer NN (with 
one input layer, one hidden layer of squashing units, and one output 
layer of linear units) was a universal functional approximator [31].   

Topologically, NNs are divided into feedforward and recurrent 
networks.  The feedforward networks include single- and multiple-
layer perceptrons, as well as radial basis functions (RBF) networks 
[32]. The recurrent networks cover competitive networks, self-
organizing maps (SOMs) [33], Hopfield nets [34], and adaptive 
resonance theory (ART) models [35].  While feed-forward NNs are 
used in supervised mode, recurrent NNs are typically geared toward 
unsupervised learning, associative memory, and self-organization.  
In the context of this paper, we will only consider feed-forward 
NNs.  Given the functional equivalence already proven between 
RBF and fuzzy systems [36] we will further limit our discussion to 
multi-layer feed-forward networks. A comprehensive current review 
of neuro-computing can be found in [37].  

Feedforward multilayer NNs are computational structures that 
can be trained to learn patterns from examples.  They are composed 
of a network of processing units or neurons.  Each neuron performs 
a weighted sum of its input, using the resulting sum as the argument 
of a non-linear activation function.  Originally the activation 
functions were sharp thresholds (or Heavyside) functions, which 
evolved to piecewise linear saturation functions, to differentiable 
saturation functions (or sigmoids), and to Gaussian functions (for 
RBFs). By using a training set that samples the relation between 
inputs and outputs, and a learning method that trains their weight 
vector to minimize a quadratic error function, neural networks offer 
the capabilities of a supervised learning algorithm that performs 
fine-granule local optimization.  

2.4 Evolutionary Computing  

Evolutionary computing (EC) algorithms exhibit an adaptive 
behavior that allows them to handle non-linear, high dimensional 
problems without requiring differentiability or explicit knowledge 
of the problem structure. As a result, these algorithms are very 
robust to time-varying behavior, even though they may exhibit low 
speed of convergence. EC covers many important families of 
stochastic algorithms, including evolutionary strategies (ES), 
proposed by Rechenberg [38] and Schwefel [39], evolutionary 
programming (EP), introduced by Fogel [40-41], and genetic 
algorithms (GAs), based on the work of Fraser [42], Bremermann 
[43], Reed et al. [44], and Holland [45-47], which contain as a 
subset genetic programming (GP), introduced by Koza [48].  

The history of EC is too complex to be completely summarized in 
a few paragraphs. It could be traced back to Friedberg [49], who 
studied the evolution of a learning machine capable of computing a 
given input-output function; Fraser [42] and Bremermann [43], who 
investigated some concepts of genetic algorithms using a binary 
encoding of the genotype; Barricelli [50], who performed some 
numerical simulation of evolutionary processes; and Reed et al. 
[44], who explored similar concepts in a simplified poker game 
simulation. The interested reader is referred to [51] for a 
comprehensive overview of evolutionary computing and to [52] for 
an encyclopedic treatment of the same subject. A collection of 
selected papers illustrating the history of EC can be found in [53].   

As noted by Fogel [51], ES, EP, and GAs share many common 
traits: “…Each maintains a population of trial solutions, imposes 
random changes to those solutions, and incorporates selection to 
determine which solutions to maintain in future generations...” 



Fogel also notes that “… GAs emphasize models of genetic 
operators as observed in nature, such as crossing-over, inversion, 
and point mutation, and apply these to abstracted chromosomes…” 
while ES and EP “… emphasize mutational transformations that 
maintain behavioral linkage between each parent and its offspring.” 

Finally, we would like to remark that EC components have 
increasingly shared their typical traits: ES have added 
recombination operators similar to GAs, while GAs have been 
extended by the use of real-number-encoded chromosomes, 
adaptive mutation rates, and additive mutation operators.  

2.5 Soft Computing Taxonomy  

The common denominator of these technologies is their departure 
from classical reasoning and modeling approaches that are usually 
based on Boolean logic, analytical models, crisp classifications, and 
deterministic search.  In ideal problem formulations, the systems to 
be modeled or controlled are described by complete and precise 
information.  In these cases, formal reasoning systems, such as 
theorem provers, can be used to attach binary truth-values to 

statements that describe the state or behavior of the physical system. 

 When we solve real-world problems, we realize that such systems 
are typically ill-defined, difficult to model, and possess large 
solution spaces. In these cases, precise models are impractical, too 
expensive, or non-existent.  Our solution must be generated by 
leveraging two kinds of resources: problem domain knowledge of 
the process or product and field data that characterize the behavior 
of the system.  The relevant available domain knowledge is typically 
a combination of first principles and empirical knowledge, and is 
usually incomplete and sometimes erroneous. The available data are 

typically a collection of input-output measurements, representing 
instances of the system's behavior, and may be incomplete and 
noisy. 

We can observe from Figure 1 that the two main approaches in 
soft computing are knowledge-driven reasoning systems (such as 
probabilistic and fuzzy computing) and data-driven search and 
optimization approaches (such as neuro and evolutionary 
computing).  This taxonomy, however, is soft in nature, given the 
existence of many hybrid systems that span across more than one 
field. 

3 SOFT COMPUTING SOLUTIONS 

3.1 Alternative Approaches to SC  

The alternative approaches to SC are the traditional knowledge-
driven reasoning systems and the data-driven systems.  The first 
class of approaches are exemplified by first-principle-derived 
models (based on differential or difference equations), by first-
principle-qualitative models (based on symbolic, qualitative calculi 

[54-55], by classical Boolean systems, such as theorem provers 
(based on unification and resolution mechanisms), or by expert 
systems embodying empirical or experiential knowledge. All these 
approaches are characterized by the encoding of problem domain 
knowledge into a model that tries to replicate the system’s behavior. 
The second class of approaches are the regression models and crisp 
clustering techniques that attempt to derive models from any 
information available from (or usually buried in) the data. 

Knowledge-driven systems, however, have limitations, as their 
underlying knowledge is usually incomplete. Sometimes, these 
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Figure  1: Soft Computing Components and Hybrid Systems 



systems require the use of simplifying assumptions to keep the 
problem tractable (e.g., linearization, hierarchy of local models, use 
of default values).  Theoretically derived knowledge may even be 
inconsistent with the real system’s behavior. Experiential 
knowledge, on the other hand, could be static, represented by a 
collection of instances of relationships among the system variables 
(sometimes pointing to causality, more often just highlighting 
correlation). The result is the creation of precise but simplified 
models that do not properly reflect reality, or the creation of 
approximate models that tend to become stale with time and are 
difficult to maintain.  

Purely data-driven methods also have their drawbacks, since data 
tend to be high-dimensional, noisy, incomplete (e.g., databases with 
empty fields in their records), or wrong (e.g., outliers due to 
malfunctioning or failing sensors, transmission problems, erroneous 
manual data entries). Some techniques have been developed to 
address these problems, such as feature extraction, filtering and 
validation gates, imputation models, and virtual sensors that model 
the recorded data as a function of other variables.    

The fundamental problem of these classical approaches lies in 
representing and integrating uncertain, imprecise knowledge in 
data-driven methods or in making use of somewhat unreliable data 
in a knowledge-driven approach. 

3.2 Soft Computing Solutions 

Although it would be presumptuous to claim that soft computing 
solves this problem, it is reasonable to affirm that SC provides a 
different paradigm in terms of representation and methodologies, 
which facilitates these integration attempts.  For instance, in 
classical control theory the problem of developing models is 
decomposed into system identification and parameter estimation. 
Usually the former is used to determine the order of the differential 
equations and the latter determines its coefficients.  Hence, in this 
traditional approach we have model = structure + parameters (+ 
search).  This equation does not change with the advent of soft 
computing. However, we now have a much richer repertoire to 
represent the structure, to tune the parameters, and to iterate this 
process. It is understood that the search method used to find the 
parameter values is an important and implicit part of the above 
equation, which needs to be chosen carefully for efficient model 
construction. 

3.3 Example of  SC Models 

For example, the knowledge base (KB) in a Mamdani- type fuzzy 
system [56] is typically used to approximate a relationship between 
a state X and an output Y.  The KB is completely defined by a set of 
scaling factors (SF), determining the ranges of values for the state 
and output variables; a termset (TS), defining the membership 
function of the values taken by each state and output variable; and 
by a ruleset (RS), characterizing a syntactic mapping of symbols 
from X to Y.  The structure of the underlying model is the ruleset, 
while the model parameters are the scaling factors and termsets. 
The inference obtained from such a system is the result of 
interpolating among the outputs of all relevant rules. The inference's 
outcome is a membership function defined on the output space, 
which is then aggregated  (defuzzified) to produce a crisp output.  
With this inference mechanism we can define a deterministic 
mapping between each point in the state space and its 
corresponding output. Therefore, we can now equate a fuzzy KB to 
a response surface in the cross product of state and output spaces, 
which approximates the original relationship.  

A Takagi-Sugeno-Kang (TSK) type of fuzzy system [57]  
increases its representational power by allowing the use of a first-
order polynomial, defined on the state space, to be the output of 
each rule in the ruleset.  This enhanced representational power, at 
the expense of local legibility [58], results in a model that is 
equivalent to radial basis functions [59]. The same model can be 
translated into a structured network, such as the adaptive neural 
fuzzy inference systems (ANFIS) proposed by Jang [60]. In ANFIS 
the ruleset determines the topology of the net (model structure), 
while dedicated nodes in the corresponding layers of the net (model 
parameters) define the termsets and the polynomial coefficients.  
Similarly, in the traditional neural networks the topology represents 
the model structure and the links' weights represent the model 
parameters. 

While NNs and structured nets use local search methods, such as 
backpropagation, to tune their parameters, it is possible to use 
evolutionary computation based global search methods to achieve 
the same parametric tuning or to postulate new structures.  An 
extensive coverage of these approaches can be found in [11, 61-62]. 

The main reason for soft computing popularity is the synergy 
derived from its components. SC's main characteristic is its intrinsic 
capability to create hybrid systems that are based on a (loose or 
tight) integration of these technologies. This integration provide us 
with complementary reasoning and searching methods that allows 
us to combine domain knowledge and empirical data to develop 
flexible computing tools and solve complex problems. 

We will briefly analyze some of the most synergistic 
combinations of soft computing technologies, with an emphasis on 
the development of smart algorithm-controllers, such as the use of 
FL to control EC parameters.  We will also discuss the application 
of EC to tune FL controllers; and the implementation of FL 
controllers as NNs tuned by backpropagation-type algorithms. We 
will focus on three real-world applications of SC that leverage the 
synergism created by hybrid systems. 

4 HYBRID SOFT COMPUTING APPLICATIONS 

4.1 EC controlled by FL: An Agile Manufacturing      
  Application.  

 Fuzzy logic enables us to easily translate qualitative knowledge 
about the problem to be solved, such as resource allocation 
strategies, performance evaluation, and performance control, into an 
executable rule set. This characteristic has been the basis for the 
successful development and deployment of fuzzy controllers. 
Typically this knowledge is used to synthesize fuzzy controllers for 
dynamic systems [16].  However, in this case the knowledge is used 
to implement a smart algorithm-controller that allocates the 
algorithm's resources to improve its convergence and performance.  
As a result, fuzzy rule bases and fuzzy algorithms can been used to 
monitor the performance of NNs or GAs and modify their control 
parameters.   

In the past, the selection of GA parameters was often left to the 
intuition and experience of the GA user. Although several 
techniques for the selection of GA parameters have been proposed 
in the literature [17-18], these parameters were computed off-line 
and kept static during the algorithm's evolution.  With fuzzy logic 
we can translate and improve heuristic rules to provide a dynamic 
control of EC resources (population size, selection pressure, and 
probabilities of crossover and mutation). By managing these 
resources during their transition from exploration (global search in 



the solution space) to exploitation (localized search in the 
discovered regions of that space that appear to be promising) we can 
improve the algorithm's its efficiency and convergence speed [19-
21].  

The crucial aspect of this approach is to find the correct balance 
between the computational resources allocated to the meta 
reasoning (e.g., the fuzzy controller) and to the object-level problem 
solving (e.g., the GA).  This additional investment of resources will 
pay off if the controller is generic enough to be applicable to other 
object-level problem domains and if its run-time overhead is offset 
by the run-time performance improvement of the algorithm. 

We illustrate this approach with an example in an agile 
manufacturing problem [22]. The object-level problem is the 
specification of a system for optimal design, manufacturing, and 
supplier planning for printed circuit assembly manufacturing.  This 
problem formulation poses the optimal selection of designs that 
realize a given functional specification, the selection of parts to 
realize a design, the selection of suppliers to supply these parts, and 
the selection of production facilities to manufacture the chosen 
design, as a global optimization problem where each selection has 
the potential to affect other selections.  The goal is to optimize an 
aggregate non-linear evaluation function of total cost and total time.  
The total cost and total time for realizing a printed circuit assembly 
are highly coupled, non-linear functions dependent on 
characteristics of a chosen design, characteristics of a chosen 
manufacturing facility, and parts supply chain characteristics.  The 
nature of the problem and the evaluation function do not lend 
themselves easily to optimization using traditional techniques such 
as linear programming.  A GA-based optimization is more easily 
applied to this problem domain, is robust, and simultaneously 
searches multiple solutions.  In this application we used a FC to 
monitor population diversity and evolution time. Depending on the 
various evolution stages, the FC modifies the GA's population size 
and the probability of mutation to improve the solution quality 
(measured as the standard deviation of the population of best 
solutions.) 

4.2 FL tuned by GAs: A Transportation Application  

The second application describes a dual role: the use of GAs to tune 
a fuzzy controller in situation where the evaluation of the fitness 
function is computationally expensive. Many researchers have 
explored the use of genetic algorithms to tune fuzzy logic 
controllers.  Karr, one of the pioneers in this quest, used GAs to 
modify the membership functions in the termsets of the variables 
used by the FCs [23].  In the transportation application chosen to 
illustrate this approach, we have followed the tuning order 
suggested by Zheng for manual tuning [24].  We first began with 
macroscopic effects by tuning the FC state and control variable 
scaling factors while using a standard uniformly spread termset and 
a homogeneous rule base.  After obtaining the best scaling factors, 
we proceeded to tune the termsets, causing medium-size effects.  
Finally, if additional improvements were needed, we tuned the rule 
base to achieve microscopic effects [25]. This parameter sensitivity 
order can be easily understood if we visualize a homogeneous rule 
base as a rule table: a modified scaling factor affects the entire rule 
table; a modified term in a termset affects one row, column, or 
diagonal in the table; a modified rule only affects one table cell.  

Specifically we will describe the design and tuning of a fuzzy 
controller for tracking a fuel-optimal velocity profile for a rail-based 
transportation system, while enforcing compliance with a prescribed 
velocity profile, and providing a smooth ride.  

This approach exemplifies the synergy of SC technologies.  This 
complex, real-world application could not have been addressed by 
classical analytical modeling techniques (without recurring to many 
simplifying assumptions).  Furthermore, its solution space was too 
large for a pure data-driven approach. 

By using a fuzzy controller we were able to translate locomotive 
engineers training procedures into an executable model that 
exhibited a reasonable performance.  However, this performance, 
was far from optimal, even after manual tuning of the model. By 
using a genetic algorithm to tune the model's scaling factors and 
membership functions, we demonstrated that this approach was able 
to find much better solutions within a reasonable amount of time, 
under different train handling criteria.  In addition, we showed that 
not all parameters needed to be treated equally, and that sequential 
optimization could greatly reduce computational effort by tuning 
the scaling factors first.  The scalability of this approach enabled us 
to tune the controller for each track profile, producing a library of 
offline-customized controllers.  For a more detailed description of 
this application, see references [5, 72]. 

4.3 Fusion of Fuzzy Cased-based Reasoning with  
   ANFIS models: A Financial Application 

The third application illustrates the use of a fusion model to 
estimate residential property values for real estate transactions.  In 
the two previous applications we described hybrid systems which 
were derived from the tight integration of two or more SC 
technologies.  However, in this application we built multiple 
estimators using different technologies on the same database. The 
estimators were based on location (LOCVAL), comparable 
properties (AICOMP), and a generative model (AIGEN).  Then we 
used a loosely integrated hybrid system, based on a fuzzy-rule set, 
to combine the results of each estimator, rather than the techniques 
themselves.  

The first model was based solely on the location and living area 
of the properties, as shown in Figure 2. A dollar per square foot 
measure was constructed for each point in the county, by suitably 
averaging the observed, filtered historical market values in the 
vicinity of that point. This locational value estimator (LOCVAL) 
produces two output values: Locational_Value (a $/sq.ft. estimate) 
and Deviation_from_prevailing_value. The local averaging is done 
by an exponentially decreasing radial basis function with a “space 
constant” of 0.15-0.2 miles. It can be described as the weighted sum 
of radial basis functions (all of the same width), each deviation for 
houses within the area covered and is derived using a situated at the 
site of a sale within the past 1 year and having an amplitude equal to 
the sales price. Deviation from prevailing value is the standard 
similar approach.  

In order to use the LOCVAL estimator correctly, the input values 
(a valid, geocoded address and a living area in squared feet) must be 
present and accurate for the locational estimator to work correctly.  
If either is missing, or clearly out-of-range, the estimator will not to 
make any prediction.  

The second model, AICOMP, relied on a case based reasoning 
(CBR) process similar to the sales comparison approach [73] used 
by certified appraisers to estimate a residential property's value.  
The CBR process consists of selecting relevant cases (which would 
be nearby house sales), adapting them, and aggregating those 
adapted cases into a single estimate of the property value. Our 
approach consists of the following four steps [74]: 
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Figure 2: Locational Value method (LOCVAL) 

1. Retrieving recent sales from a case-base. Upon entering the 
subject property attributes, AICOMP retrieves potentially similar 
comparables from the case-base. This initial selection uses six 
attributes: address, date of sale, living area, lot area, number of 
bathrooms, and bedrooms. 

2. Comparing the subject property with the retrieved cases. The 
comparables are rated and ranked on a similarity scale to identify 
the most similar ones to the subject property. This rating is 
obtained from a weighted aggregation of the decision maker 
preferences, expressed as fuzzy membership distributions and 
relations.  

3. Adjusting the sales price of the retrieved cases. Each property’s 
sales price is adjusted to reflect their differences from the 
subject property. These adjustments are performed by a rule set 
that uses additional property attributes, such as construction 
quality, conditions, pools, fireplaces, etc. 

4. Aggregating the adjusted sales prices of the retrieved cases. The 
best four to eight comparables are selected. The adjusted sales 
price and similarity of the selected properties are combined to 
produce an estimate of the subject value with an associated 
reliability value. 

 
The third method, called AIGEN, is a generative AI method in 

which a fuzzy-neural net, a modified version of ANFIS, is trained 
by using a subset of cases from the case-base.  The resulting run-
time system provides an estimate of the subject’s value. 

Each model produced a property value and an associated 
reliability value. The latter was a function of the “averageness” or 
“typicality” of the subject property based on its physical 
characteristics (such as lot size, living area, total room). These 
typical values were represented by possibilistic distributions (fuzzy 
sets).  We computed the degree to which each property satisfied 
each criterion. The overall property value reliability was obtained 
by considering the conjunction of these constraint satisfactions (i.e., 
the minimum of the individual reliability values). A more detailed 
description of this process can be found in [75]. 

The computation time, required inputs, errors and reliability 
values for these three methods are shown in Figure 3. The locational 
value method took the least time and information, but produced the 
largest error. The CBR approach took the largest time and number 
of inputs, but produced the lowest error, among the models.  
However, the fusion of the three models produced the most accurate 
and reliable results. 
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Figure 3: Data comparison of multiple approaches 

5 CONCLUSIONS 

Soft computing is having an impact on many industrial and 
commercial operations, from scheduling to predictive modeling and 
control. It provides us with alternative approaches to traditional 
knowledge-driven reasoning systems or pure data-driven systems 
and it overcomes their shortcomings by synthesizing a number of 
complementary reasoning and searching methods over a large 
spectrum of problem domains.  

These systems leverage the tolerance for imprecision, uncertainty, 
and incompleteness, which is intrinsic to the problems to be solved, 
and generate tractable, low-cost, robust solutions to such problems. 
The synergy derived from these hybrid systems stems from the 
relative ease with which we can translate problem domain 
knowledge into initial model structures whose parameters are 
further tuned by local or global search methods.  This is a form of 
complementary or tight hybridization. Apart from this type of 
hybridization, we also discussed the fusion of estimators – this type 
of model fusion or loose hybridization does not combine features of 
the methodologies themselves, but only their results. The primary 
motivation here is to increase reliability rather than to make model 
construction easier. 

We have illustrated this synergy by describing three applications 
in configuration management, control, and valuation.  These 
applications exemplify the development of hybrid algorithms that 
are superior to each of their underlying SC components and that 
provide us with the better real-world problem solving tools. This 
review illustrates the interaction of knowledge and data in SC. To 
tune knowledge-derived models we first translate domain 
knowledge into an initial structure and parameters and then use 
global or local data search to tune the parameters. To control or 
limit search by using prior knowledge we first use global or local 
search to derive the models (structure + parameters), we embed 
knowledge in operators to improve global search, and we translate 
domain knowledge into a controller to manage the solution 
convergence and quality of the search algorithm. 

The payoff of this conjunctive use of techniques is a more 
accurate and robust solution than a solution derived from the use of 
any single technique alone. This synergy comes at comparatively 
little expense because typically the methods do not try to solve the 
same problem in parallel but they do it in a mutually complementary 
fashion. Another way to say this is that the model needs a structure 
and parameters, and a search method to discover them, and no 
single technique should be expected to be the best for all problems. 



For example, in our control application, a hierarchical fuzzy 
controller was used to embody the qualitative knowledge used by 
locomotive engineers to manually perform the task, but manual 
tuning of this controller would have been an inferior solution. Fast 
tuning of this controller was obtained by a global search approach, a 
genetic algorithm that yielded a robust controller whose parameters 
did not have to be specialized for each particular initial condition.  

Another advantage to the hybridization of techniques is that it is 
easier to think of alternative solutions to the same problem, as was 
evidenced by the property estimation application. If there are 
several possibilities for the structure and the search methods, many 
more pairings of technologies are possible, and problem solving 
becomes easier. For instance, AIGEN used a fuzzy model with local 
gradient search, but one could also use a pure neural network 
trained by an evolutionary algorithm. Of course, computation time, 
cost, business needs, and data requirements will then influence the 
choice of the combination of technologies. A step in further 
improving system performance is the exploitation of parallel 
systems. These systems may be designed to rely to the maximum 
amount on non-overlapping data and use different techniques to 
arrive at their conclusions. In information fusion, the outputs of 
these heterogeneous models will be compared, contrasted, and 
aggregated, as seen in our last application. 

The future appears to hold a lot of promise for the novel use and 
combinations of SC applications. The circle of SC's related 
technologies will probably widen beyond its current constituents. 
The push for low-cost solutions combined with the need for 
intelligent tools will result in the deployment of hybrid systems that 
efficiently integrate reasoning and search techniques. 
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