
Hybrid Soft Computing Systems: Where Are We Going?
Piero P. Bonissone1

Abstract.

Soft computing is an association of computing methodologies that
includes fuzzy logic, neuro-computing, evolutionary computing,
and probabilistic computing. After a brief overview of Soft
Computing components, we will analyze some of its most
synergistic combinations. We will emphasize the development of
smart algorithm-controllers, such as the use of fuzzy logic to control
the parameters of evolutionary computing and, conversely, the
application of evolutionary algorithms to tune fuzzy controllers. We
will focus on three real-world applications of soft computing that
leverage the synergism created by hybrid systems.

1 SOFT COMPUTING OVERVIEW

Soft computing (SC) is a term originally coined by Zadeh to denote
systems that “… exploit the tolerance for imprecision, uncertainty,
and partial truth to achieve tractability, robustness, low solution
cost, and better rapport with reality" [1]. Traditionally SC has been
comprised by four technical disciplines. The first two, probabilistic
reasoning (PR) and fuzzy logic (FL) reasoning systems, are based
on knowledge-driven reasoning. The other two technical
disciplines, neuro computing (NC) and evolutionary computing
(EC), are data-driven search and optimization approaches [2].
Although we have not reached a consensus regarding the scope of
SC or the nature of this association [3], the emergence of this new
discipline is undeniable [4].

This paper is the reduced version of a much more extensive
coverage of this topic, which can be found in [5].

2 SC COMPONENTS AND TAXONOMY

2.1 Fuzzy Computing

The treatment of imprecision and vagueness can be traced back to
the work of Post, Kleene, and Lukasiewicz, multiple-valued
logicians who in the early 1930's proposed the use of three-valued
logic systems (later followed by infinite-valued logic) to represent
undetermined, unknown, or other possible intermediate truth-values
between the classical Boolean true and false values [6]. In 1937, the
philosopher Max Black suggested the use of a consistency profile to
represent vague concepts [7]. While vagueness relates to ambiguity,
fuzziness addresses the lack of sharp set-boundaries. It was not until
1965, when Zadeh proposed a complete theory of fuzzy sets (and its
isomorphic fuzzy logic), that we were able to represent and
manipulate ill-defined concepts [8].

1
 GE Corporate Research and Development, One Research

 Circle, Niskayuna, NY 12309, USA. email:
 bonissone@crd.ge.com

 In a narrow sense, fuzzy logic could be considered a
fuzzification of Lukasiewicz Aleph-1 multiple-valued logic [9]. In
the broader sense, however, this narrow interpretation represents
only one of FL’s four facets [10]. More specifically, FL has a
logical facet, derived from its multiple-valued logic genealogy; a
set-theoretic facet, stemming from the representation of sets with
ill-defined boundaries; a relational facet, focused on the
representation and use of fuzzy relations; and an epistemic facet,
covering the use of FL to fuzzy knowledge based systems and data
bases. A comprehensive review of fuzzy logic and fuzzy computing
can be found in [11].

Fuzzy logic gives us a language, with syntax and local semantics,
in which we can translate qualitative knowledge about the problem
to be solved. In particular, FL allows us to use linguistic variables
to model dynamic systems. These variables take fuzzy values that
are characterized by a label (a sentence generated from the syntax)
and a meaning (a membership function determined by a local
semantic procedure). The meaning of a linguistic variable may be
interpreted as an elastic constraint on its value. These constraints
are propagated by fuzzy inference operations, based on the
generalized modus-ponens. This reasoning mechanism, with its
interpolation properties, gives FL a robustness with respect to
variations in the system's parameters, disturbances, etc., which is
one of FL's main characteristics [12].

2.2 Probabilistic Computing

Rather than retracing the history of probability, we will focus on the
development of probabilistic computing (PC) and illustrate the way
it complements fuzzy computing. As depicted in Figure 1, we can
divide probabilistic computing into two classes: single-valued and
interval-valued systems.

Bayesian belief networks (BBNs), based on the original work of
Bayes [13], are a typical example of single-valued probabilistic
reasoning systems. They started with approximate methods used in
first-generation expert systems, such as MYCIN’s confirmation
theory [14] and PROSPECTOR’s modified Bayesian rule [15], and
evolved into formal methods for propagating probability values
over networks [16-17]. In general, probabilistic reasoning systems
have exponential complexity, when we need to compute the joint
probability distributions for all the variables used in a model.
Before the advent of BBNs, it was customary to avoid such
computational problems by making unrealistic, global assumptions
of conditional independence. By using BBNs we can decrease this
complexity by encoding domain knowledge as structural
information: the presence or lack of conditional dependency
between two variables is indicated by the presence or lack of a link
connecting the nodes representing such variables in the network
topology. For specialized topologies (trees, poly-trees, directed
acyclic graphs), efficient propagation algorithms have been
proposed by Kim and Pearl [18]. However, the complexity of

multiple–connected BBNs is still exponential in the number of
nodes of the largest sub-graph. When a graph decomposition is not
possible, we resort to approximate methods, such as clustering and
bounding conditioning, and simulation techniques, such as logic
samplings and Markov simulations.

Dempster-Shafer (DS) systems are a typical example of interval-
valued probabilistic reasoning systems. They provide lower and
upper probability bounds instead of a single value as in most BBN
cases. The DS theory was developed independently by Dempster
[19] and Shafer [20]. Dempster proposed a calculus for dealing
with interval-valued probabilities induced by multiple-valued
mappings. Shafer, on the other hand, started from an axiomatic
approach and defined a calculus of belief functions. His purpose
was to compute the credibility (degree of belief) of statements made
by different sources, taking into account the sources’ reliability.
Although they started from different semantics, both calculi were
identical.

Probabilistic computing provides a way to evaluate the outcome
of systems affected by randomness (or other types of probabilistic
uncertainty). PC’s basic inferential mechanism - conditioning -
allows us to modify previous estimates of the system's outcome
based on new evidence.

2.2.1 Comparing Probabilistic and Fuzzy Computing.

In this brief review of fuzzy and probabilistic computing, we would
like to emphasize that randomness and fuzziness capture two
different types of uncertainty. In randomness, the uncertainty is
derived from the non-deterministic membership of a point from a
sample space (describing the set of possible values for the random
variable), into a well-defined region of that space (describing the
event). A probability value describes the tendency or frequency with
which the random variable takes values inside the region. In
fuzziness, the uncertainty is derived from the deterministic but
partial membership of a point (from a reference space) into an
imprecisely defined region of that space. The region is represented
by a fuzzy set. The characteristic function of the fuzzy set maps
every point from such space into the real-valued interval [0,1],
instead of the set {0,1}. A partial membership value does not
represent a frequency. Rather, it describes the degree to which that
particular element of the universe of discourse satisfies the property
that characterizes the fuzzy set. In 1968, Zadeh noted the
complementary nature of these two concepts, when he introduced
the probability measure of a fuzzy event [21]. In 1981, Smets
extended the theory of belief functions to fuzzy sets by defining the
belief of a fuzzy event [22]. These are the first two cases of hybrid
systems illustrated in Figure 1.

2.3 Neural Computing

The genealogy of neural networks (NN) could be traced back to
1943, when McCulloch and Pitts showed that a network of binary
decision units (BDNs) could implement any logical function [23].
Building upon this concept, Rosenblatt proposed a one-layer
feedforward network, called a perceptron, and demonstrated that it
could be trained to classify patterns [24-26]. Minsky and Papert
[27] proved that single-layer perceptrons could only provide linear
partitions of the decision space. As such they were not capable of
separating nonlinear or non-convex regions. This caused the NN
community to focus its efforts on the development of multilayer
NNs that could overcome these limitations. The training of these
networks, however, was still problematic. Finally, the introduction
of backpropagation (BP), independently developed by Werbos [28],

Parker [29], and LeCun [30], provided a sound theoretical way to
train multi-layered, feed-forward networks with nonlinear activation
functions. In 1989, Hornik et al. proved that a three-layer NN (with
one input layer, one hidden layer of squashing units, and one output
layer of linear units) was a universal functional approximator [31].

Topologically, NNs are divided into feedforward and recurrent
networks. The feedforward networks include single- and multiple-
layer perceptrons, as well as radial basis functions (RBF) networks
[32]. The recurrent networks cover competitive networks, self-
organizing maps (SOMs) [33], Hopfield nets [34], and adaptive
resonance theory (ART) models [35]. While feed-forward NNs are
used in supervised mode, recurrent NNs are typically geared toward
unsupervised learning, associative memory, and self-organization.
In the context of this paper, we will only consider feed-forward
NNs. Given the functional equivalence already proven between
RBF and fuzzy systems [36] we will further limit our discussion to
multi-layer feed-forward networks. A comprehensive current review
of neuro-computing can be found in [37].

Feedforward multilayer NNs are computational structures that
can be trained to learn patterns from examples. They are composed
of a network of processing units or neurons. Each neuron performs
a weighted sum of its input, using the resulting sum as the argument
of a non-linear activation function. Originally the activation
functions were sharp thresholds (or Heavyside) functions, which
evolved to piecewise linear saturation functions, to differentiable
saturation functions (or sigmoids), and to Gaussian functions (for
RBFs). By using a training set that samples the relation between
inputs and outputs, and a learning method that trains their weight
vector to minimize a quadratic error function, neural networks offer
the capabilities of a supervised learning algorithm that performs
fine-granule local optimization.

2.4 Evolutionary Computing

Evolutionary computing (EC) algorithms exhibit an adaptive
behavior that allows them to handle non-linear, high dimensional
problems without requiring differentiability or explicit knowledge
of the problem structure. As a result, these algorithms are very
robust to time-varying behavior, even though they may exhibit low
speed of convergence. EC covers many important families of
stochastic algorithms, including evolutionary strategies (ES),
proposed by Rechenberg [38] and Schwefel [39], evolutionary
programming (EP), introduced by Fogel [40-41], and genetic
algorithms (GAs), based on the work of Fraser [42], Bremermann
[43], Reed et al. [44], and Holland [45-47], which contain as a
subset genetic programming (GP), introduced by Koza [48].

The history of EC is too complex to be completely summarized in
a few paragraphs. It could be traced back to Friedberg [49], who
studied the evolution of a learning machine capable of computing a
given input-output function; Fraser [42] and Bremermann [43], who
investigated some concepts of genetic algorithms using a binary
encoding of the genotype; Barricelli [50], who performed some
numerical simulation of evolutionary processes; and Reed et al.
[44], who explored similar concepts in a simplified poker game
simulation. The interested reader is referred to [51] for a
comprehensive overview of evolutionary computing and to [52] for
an encyclopedic treatment of the same subject. A collection of
selected papers illustrating the history of EC can be found in [53].

As noted by Fogel [51], ES, EP, and GAs share many common
traits: “…Each maintains a population of trial solutions, imposes
random changes to those solutions, and incorporates selection to
determine which solutions to maintain in future generations...”

Fogel also notes that “… GAs emphasize models of genetic
operators as observed in nature, such as crossing-over, inversion,
and point mutation, and apply these to abstracted chromosomes…”
while ES and EP “… emphasize mutational transformations that
maintain behavioral linkage between each parent and its offspring.”

Finally, we would like to remark that EC components have
increasingly shared their typical traits: ES have added
recombination operators similar to GAs, while GAs have been
extended by the use of real-number-encoded chromosomes,
adaptive mutation rates, and additive mutation operators.

2.5 Soft Computing Taxonomy

The common denominator of these technologies is their departure
from classical reasoning and modeling approaches that are usually
based on Boolean logic, analytical models, crisp classifications, and
deterministic search. In ideal problem formulations, the systems to
be modeled or controlled are described by complete and precise
information. In these cases, formal reasoning systems, such as
theorem provers, can be used to attach binary truth-values to

statements that describe the state or behavior of the physical system.

 When we solve real-world problems, we realize that such systems
are typically ill-defined, difficult to model, and possess large
solution spaces. In these cases, precise models are impractical, too
expensive, or non-existent. Our solution must be generated by
leveraging two kinds of resources: problem domain knowledge of
the process or product and field data that characterize the behavior
of the system. The relevant available domain knowledge is typically
a combination of first principles and empirical knowledge, and is
usually incomplete and sometimes erroneous. The available data are

typically a collection of input-output measurements, representing
instances of the system's behavior, and may be incomplete and
noisy.

We can observe from Figure 1 that the two main approaches in
soft computing are knowledge-driven reasoning systems (such as
probabilistic and fuzzy computing) and data-driven search and
optimization approaches (such as neuro and evolutionary
computing). This taxonomy, however, is soft in nature, given the
existence of many hybrid systems that span across more than one
field.

3 SOFT COMPUTING SOLUTIONS

3.1 Alternative Approaches to SC

The alternative approaches to SC are the traditional knowledge-
driven reasoning systems and the data-driven systems. The first
class of approaches are exemplified by first-principle-derived
models (based on differential or difference equations), by first-
principle-qualitative models (based on symbolic, qualitative calculi

[54-55], by classical Boolean systems, such as theorem provers
(based on unification and resolution mechanisms), or by expert
systems embodying empirical or experiential knowledge. All these
approaches are characterized by the encoding of problem domain
knowledge into a model that tries to replicate the system’s behavior.
The second class of approaches are the regression models and crisp
clustering techniques that attempt to derive models from any
information available from (or usually buried in) the data.

Knowledge-driven systems, however, have limitations, as their
underlying knowledge is usually incomplete. Sometimes, these

Probabilistic
Models

Bayesian
Belief Nets

Dempster-
Shafer theory

Approximate Reasoning Approaches

Multivalued
and Fuzzy Logics

MV-Algebras

Mechanism: Conditioning Mechanism: Modus Ponens

Neural Networks

Feedforward

Search/Optimization Approaches

Evolutionary
Computation

Evol.
Strat.

Evol.
Progr.

Local search, Fine granule Global search, Large granule

Feedback

Gen.
Algor.

Gen.
Progr.

Single
Layer

Multi
Layer

RBF
nets

Compet.
nets

Kohonen
SOM

ART
models

Hopfield
nets

Probability
of fuzzy

event

Belief of
fuzzy event

NN parameters
(learning rate)

controlled by FL

GA parameters
controlled by

FL

Fuzzy
Logic

FL Controllers
tuned by NNs

NN topology and
weights

generated by GAs

FL Controllers
generated and
tuned by GAs

GA parameters
(Pop size, select.)
controlled by GA

Probabilistic
Computing
gg

Bayesian
Belief Nets

Dempster-
Shafer theory

Approximate Reasoning Approaches

Multivalued Logic
and Fuzzy Computing

MV-Algebras

Mechanism: Conditioning Mechanism: Modus Ponens

Neural Computing

Feedforward
NN

Search/Optimization Approaches

Evolutionary
Computing

Evol.
Strat.

Evol.
Progr.

Local search, Fine granule Global search, Large granule

Recurrent
NN Gen.

Algor.

Gen.
Progr.

Single
Layer

Multi
Layer

RBF
nets

Compet.
nets

Kohonen
SOM

ART
models

Hopfield
nets

Probability
of fuzzy

event

Belief of
fuzzy event

NN parameters
(learning rate)

controlled by FL

EC parameters
controlled by

FL

Fuzzy
Logic

FL Controllers
tuned by NNs

NN topology and
weights

generated by ECs

FL Controllers
generated and
tuned by ECs

EC parameters
(Pop size, select.)
controlled by EC

HYBRID SYSTEMS

Figure 1: Soft Computing Components and Hybrid Systems

systems require the use of simplifying assumptions to keep the
problem tractable (e.g., linearization, hierarchy of local models, use
of default values). Theoretically derived knowledge may even be
inconsistent with the real system’s behavior. Experiential
knowledge, on the other hand, could be static, represented by a
collection of instances of relationships among the system variables
(sometimes pointing to causality, more often just highlighting
correlation). The result is the creation of precise but simplified
models that do not properly reflect reality, or the creation of
approximate models that tend to become stale with time and are
difficult to maintain.

Purely data-driven methods also have their drawbacks, since data
tend to be high-dimensional, noisy, incomplete (e.g., databases with
empty fields in their records), or wrong (e.g., outliers due to
malfunctioning or failing sensors, transmission problems, erroneous
manual data entries). Some techniques have been developed to
address these problems, such as feature extraction, filtering and
validation gates, imputation models, and virtual sensors that model
the recorded data as a function of other variables.

The fundamental problem of these classical approaches lies in
representing and integrating uncertain, imprecise knowledge in
data-driven methods or in making use of somewhat unreliable data
in a knowledge-driven approach.

3.2 Soft Computing Solutions

Although it would be presumptuous to claim that soft computing
solves this problem, it is reasonable to affirm that SC provides a
different paradigm in terms of representation and methodologies,
which facilitates these integration attempts. For instance, in
classical control theory the problem of developing models is
decomposed into system identification and parameter estimation.
Usually the former is used to determine the order of the differential
equations and the latter determines its coefficients. Hence, in this
traditional approach we have model = structure + parameters (+
search). This equation does not change with the advent of soft
computing. However, we now have a much richer repertoire to
represent the structure, to tune the parameters, and to iterate this
process. It is understood that the search method used to find the
parameter values is an important and implicit part of the above
equation, which needs to be chosen carefully for efficient model
construction.

3.3 Example of SC Models

For example, the knowledge base (KB) in a Mamdani- type fuzzy
system [56] is typically used to approximate a relationship between
a state X and an output Y. The KB is completely defined by a set of
scaling factors (SF), determining the ranges of values for the state
and output variables; a termset (TS), defining the membership
function of the values taken by each state and output variable; and
by a ruleset (RS), characterizing a syntactic mapping of symbols
from X to Y. The structure of the underlying model is the ruleset,
while the model parameters are the scaling factors and termsets.
The inference obtained from such a system is the result of
interpolating among the outputs of all relevant rules. The inference's
outcome is a membership function defined on the output space,
which is then aggregated (defuzzified) to produce a crisp output.
With this inference mechanism we can define a deterministic
mapping between each point in the state space and its
corresponding output. Therefore, we can now equate a fuzzy KB to
a response surface in the cross product of state and output spaces,
which approximates the original relationship.

A Takagi-Sugeno-Kang (TSK) type of fuzzy system [57]
increases its representational power by allowing the use of a first-
order polynomial, defined on the state space, to be the output of
each rule in the ruleset. This enhanced representational power, at
the expense of local legibility [58], results in a model that is
equivalent to radial basis functions [59]. The same model can be
translated into a structured network, such as the adaptive neural
fuzzy inference systems (ANFIS) proposed by Jang [60]. In ANFIS
the ruleset determines the topology of the net (model structure),
while dedicated nodes in the corresponding layers of the net (model
parameters) define the termsets and the polynomial coefficients.
Similarly, in the traditional neural networks the topology represents
the model structure and the links' weights represent the model
parameters.

While NNs and structured nets use local search methods, such as
backpropagation, to tune their parameters, it is possible to use
evolutionary computation based global search methods to achieve
the same parametric tuning or to postulate new structures. An
extensive coverage of these approaches can be found in [11, 61-62].

The main reason for soft computing popularity is the synergy
derived from its components. SC's main characteristic is its intrinsic
capability to create hybrid systems that are based on a (loose or
tight) integration of these technologies. This integration provide us
with complementary reasoning and searching methods that allows
us to combine domain knowledge and empirical data to develop
flexible computing tools and solve complex problems.

We will briefly analyze some of the most synergistic
combinations of soft computing technologies, with an emphasis on
the development of smart algorithm-controllers, such as the use of
FL to control EC parameters. We will also discuss the application
of EC to tune FL controllers; and the implementation of FL
controllers as NNs tuned by backpropagation-type algorithms. We
will focus on three real-world applications of SC that leverage the
synergism created by hybrid systems.

4 HYBRID SOFT COMPUTING APPLICATIONS

4.1 EC controlled by FL: An Agile Manufacturing
 Application.

 Fuzzy logic enables us to easily translate qualitative knowledge
about the problem to be solved, such as resource allocation
strategies, performance evaluation, and performance control, into an
executable rule set. This characteristic has been the basis for the
successful development and deployment of fuzzy controllers.
Typically this knowledge is used to synthesize fuzzy controllers for
dynamic systems [16]. However, in this case the knowledge is used
to implement a smart algorithm-controller that allocates the
algorithm's resources to improve its convergence and performance.
As a result, fuzzy rule bases and fuzzy algorithms can been used to
monitor the performance of NNs or GAs and modify their control
parameters.

In the past, the selection of GA parameters was often left to the
intuition and experience of the GA user. Although several
techniques for the selection of GA parameters have been proposed
in the literature [17-18], these parameters were computed off-line
and kept static during the algorithm's evolution. With fuzzy logic
we can translate and improve heuristic rules to provide a dynamic
control of EC resources (population size, selection pressure, and
probabilities of crossover and mutation). By managing these
resources during their transition from exploration (global search in

the solution space) to exploitation (localized search in the
discovered regions of that space that appear to be promising) we can
improve the algorithm's its efficiency and convergence speed [19-
21].

The crucial aspect of this approach is to find the correct balance
between the computational resources allocated to the meta
reasoning (e.g., the fuzzy controller) and to the object-level problem
solving (e.g., the GA). This additional investment of resources will
pay off if the controller is generic enough to be applicable to other
object-level problem domains and if its run-time overhead is offset
by the run-time performance improvement of the algorithm.

We illustrate this approach with an example in an agile
manufacturing problem [22]. The object-level problem is the
specification of a system for optimal design, manufacturing, and
supplier planning for printed circuit assembly manufacturing. This
problem formulation poses the optimal selection of designs that
realize a given functional specification, the selection of parts to
realize a design, the selection of suppliers to supply these parts, and
the selection of production facilities to manufacture the chosen
design, as a global optimization problem where each selection has
the potential to affect other selections. The goal is to optimize an
aggregate non-linear evaluation function of total cost and total time.
The total cost and total time for realizing a printed circuit assembly
are highly coupled, non-linear functions dependent on
characteristics of a chosen design, characteristics of a chosen
manufacturing facility, and parts supply chain characteristics. The
nature of the problem and the evaluation function do not lend
themselves easily to optimization using traditional techniques such
as linear programming. A GA-based optimization is more easily
applied to this problem domain, is robust, and simultaneously
searches multiple solutions. In this application we used a FC to
monitor population diversity and evolution time. Depending on the
various evolution stages, the FC modifies the GA's population size
and the probability of mutation to improve the solution quality
(measured as the standard deviation of the population of best
solutions.)

4.2 FL tuned by GAs: A Transportation Application

The second application describes a dual role: the use of GAs to tune
a fuzzy controller in situation where the evaluation of the fitness
function is computationally expensive. Many researchers have
explored the use of genetic algorithms to tune fuzzy logic
controllers. Karr, one of the pioneers in this quest, used GAs to
modify the membership functions in the termsets of the variables
used by the FCs [23]. In the transportation application chosen to
illustrate this approach, we have followed the tuning order
suggested by Zheng for manual tuning [24]. We first began with
macroscopic effects by tuning the FC state and control variable
scaling factors while using a standard uniformly spread termset and
a homogeneous rule base. After obtaining the best scaling factors,
we proceeded to tune the termsets, causing medium-size effects.
Finally, if additional improvements were needed, we tuned the rule
base to achieve microscopic effects [25]. This parameter sensitivity
order can be easily understood if we visualize a homogeneous rule
base as a rule table: a modified scaling factor affects the entire rule
table; a modified term in a termset affects one row, column, or
diagonal in the table; a modified rule only affects one table cell.

Specifically we will describe the design and tuning of a fuzzy
controller for tracking a fuel-optimal velocity profile for a rail-based
transportation system, while enforcing compliance with a prescribed
velocity profile, and providing a smooth ride.

This approach exemplifies the synergy of SC technologies. This
complex, real-world application could not have been addressed by
classical analytical modeling techniques (without recurring to many
simplifying assumptions). Furthermore, its solution space was too
large for a pure data-driven approach.

By using a fuzzy controller we were able to translate locomotive
engineers training procedures into an executable model that
exhibited a reasonable performance. However, this performance,
was far from optimal, even after manual tuning of the model. By
using a genetic algorithm to tune the model's scaling factors and
membership functions, we demonstrated that this approach was able
to find much better solutions within a reasonable amount of time,
under different train handling criteria. In addition, we showed that
not all parameters needed to be treated equally, and that sequential
optimization could greatly reduce computational effort by tuning
the scaling factors first. The scalability of this approach enabled us
to tune the controller for each track profile, producing a library of
offline-customized controllers. For a more detailed description of
this application, see references [5, 72].

4.3 Fusion of Fuzzy Cased-based Reasoning with
 ANFIS models: A Financial Application

The third application illustrates the use of a fusion model to
estimate residential property values for real estate transactions. In
the two previous applications we described hybrid systems which
were derived from the tight integration of two or more SC
technologies. However, in this application we built multiple
estimators using different technologies on the same database. The
estimators were based on location (LOCVAL), comparable
properties (AICOMP), and a generative model (AIGEN). Then we
used a loosely integrated hybrid system, based on a fuzzy-rule set,
to combine the results of each estimator, rather than the techniques
themselves.

The first model was based solely on the location and living area
of the properties, as shown in Figure 2. A dollar per square foot
measure was constructed for each point in the county, by suitably
averaging the observed, filtered historical market values in the
vicinity of that point. This locational value estimator (LOCVAL)
produces two output values: Locational_Value (a $/sq.ft. estimate)
and Deviation_from_prevailing_value. The local averaging is done
by an exponentially decreasing radial basis function with a “space
constant” of 0.15-0.2 miles. It can be described as the weighted sum
of radial basis functions (all of the same width), each deviation for
houses within the area covered and is derived using a situated at the
site of a sale within the past 1 year and having an amplitude equal to
the sales price. Deviation from prevailing value is the standard
similar approach.

In order to use the LOCVAL estimator correctly, the input values
(a valid, geocoded address and a living area in squared feet) must be
present and accurate for the locational estimator to work correctly.
If either is missing, or clearly out-of-range, the estimator will not to
make any prediction.

The second model, AICOMP, relied on a case based reasoning
(CBR) process similar to the sales comparison approach [73] used
by certified appraisers to estimate a residential property's value.
The CBR process consists of selecting relevant cases (which would
be nearby house sales), adapting them, and aggregating those
adapted cases into a single estimate of the property value. Our
approach consists of the following four steps [74]:

Known
Sales

Sales price
Living_Area

Address Geocoding
Latitude
Longitude

$ / sq. ft.

Grid

Subject
Property

Address

Living_Area

Geocoding
Latitude
Longitude

X

$ Value

$/sq. ft.

Done before use

When used for estimating Deviation

Reliability

Figure 2: Locational Value method (LOCVAL)

1. Retrieving recent sales from a case-base. Upon entering the
subject property attributes, AICOMP retrieves potentially similar
comparables from the case-base. This initial selection uses six
attributes: address, date of sale, living area, lot area, number of
bathrooms, and bedrooms.

2. Comparing the subject property with the retrieved cases. The
comparables are rated and ranked on a similarity scale to identify
the most similar ones to the subject property. This rating is
obtained from a weighted aggregation of the decision maker
preferences, expressed as fuzzy membership distributions and
relations.

3. Adjusting the sales price of the retrieved cases. Each property’s
sales price is adjusted to reflect their differences from the
subject property. These adjustments are performed by a rule set
that uses additional property attributes, such as construction
quality, conditions, pools, fireplaces, etc.

4. Aggregating the adjusted sales prices of the retrieved cases. The
best four to eight comparables are selected. The adjusted sales
price and similarity of the selected properties are combined to
produce an estimate of the subject value with an associated
reliability value.

The third method, called AIGEN, is a generative AI method in

which a fuzzy-neural net, a modified version of ANFIS, is trained
by using a subset of cases from the case-base. The resulting run-
time system provides an estimate of the subject’s value.

Each model produced a property value and an associated
reliability value. The latter was a function of the “averageness” or
“typicality” of the subject property based on its physical
characteristics (such as lot size, living area, total room). These
typical values were represented by possibilistic distributions (fuzzy
sets). We computed the degree to which each property satisfied
each criterion. The overall property value reliability was obtained
by considering the conjunction of these constraint satisfactions (i.e.,
the minimum of the individual reliability values). A more detailed
description of this process can be found in [75].

The computation time, required inputs, errors and reliability
values for these three methods are shown in Figure 3. The locational
value method took the least time and information, but produced the
largest error. The CBR approach took the largest time and number
of inputs, but produced the lowest error, among the models.
However, the fusion of the three models produced the most accurate
and reliable results.

10-12%

Relative
Error

7-9%

5%

Computation
at Run Time

LOW

HIGH

Required
Inputs

Address
Living_Area

Bedrooms
Baths
Total Rooms
Lot_Size

Fused $ Estimate

$$

$$

$$

FUSIONAICOMP can use the following optional
property attributes if available: Age,
Eff_Age, Quality, Condition, Fireplaces,
Pool, Air_Cond, and Heating

LOCVAL

AIGEN

AICOMP

Estimator Reliability

Figure 3: Data comparison of multiple approaches

5 CONCLUSIONS

Soft computing is having an impact on many industrial and
commercial operations, from scheduling to predictive modeling and
control. It provides us with alternative approaches to traditional
knowledge-driven reasoning systems or pure data-driven systems
and it overcomes their shortcomings by synthesizing a number of
complementary reasoning and searching methods over a large
spectrum of problem domains.

These systems leverage the tolerance for imprecision, uncertainty,
and incompleteness, which is intrinsic to the problems to be solved,
and generate tractable, low-cost, robust solutions to such problems.
The synergy derived from these hybrid systems stems from the
relative ease with which we can translate problem domain
knowledge into initial model structures whose parameters are
further tuned by local or global search methods. This is a form of
complementary or tight hybridization. Apart from this type of
hybridization, we also discussed the fusion of estimators – this type
of model fusion or loose hybridization does not combine features of
the methodologies themselves, but only their results. The primary
motivation here is to increase reliability rather than to make model
construction easier.

We have illustrated this synergy by describing three applications
in configuration management, control, and valuation. These
applications exemplify the development of hybrid algorithms that
are superior to each of their underlying SC components and that
provide us with the better real-world problem solving tools. This
review illustrates the interaction of knowledge and data in SC. To
tune knowledge-derived models we first translate domain
knowledge into an initial structure and parameters and then use
global or local data search to tune the parameters. To control or
limit search by using prior knowledge we first use global or local
search to derive the models (structure + parameters), we embed
knowledge in operators to improve global search, and we translate
domain knowledge into a controller to manage the solution
convergence and quality of the search algorithm.

The payoff of this conjunctive use of techniques is a more
accurate and robust solution than a solution derived from the use of
any single technique alone. This synergy comes at comparatively
little expense because typically the methods do not try to solve the
same problem in parallel but they do it in a mutually complementary
fashion. Another way to say this is that the model needs a structure
and parameters, and a search method to discover them, and no
single technique should be expected to be the best for all problems.

For example, in our control application, a hierarchical fuzzy
controller was used to embody the qualitative knowledge used by
locomotive engineers to manually perform the task, but manual
tuning of this controller would have been an inferior solution. Fast
tuning of this controller was obtained by a global search approach, a
genetic algorithm that yielded a robust controller whose parameters
did not have to be specialized for each particular initial condition.

Another advantage to the hybridization of techniques is that it is
easier to think of alternative solutions to the same problem, as was
evidenced by the property estimation application. If there are
several possibilities for the structure and the search methods, many
more pairings of technologies are possible, and problem solving
becomes easier. For instance, AIGEN used a fuzzy model with local
gradient search, but one could also use a pure neural network
trained by an evolutionary algorithm. Of course, computation time,
cost, business needs, and data requirements will then influence the
choice of the combination of technologies. A step in further
improving system performance is the exploitation of parallel
systems. These systems may be designed to rely to the maximum
amount on non-overlapping data and use different techniques to
arrive at their conclusions. In information fusion, the outputs of
these heterogeneous models will be compared, contrasted, and
aggregated, as seen in our last application.

The future appears to hold a lot of promise for the novel use and
combinations of SC applications. The circle of SC's related
technologies will probably widen beyond its current constituents.
The push for low-cost solutions combined with the need for
intelligent tools will result in the deployment of hybrid systems that
efficiently integrate reasoning and search techniques.

REFERENCES
[1] L.A. Zadeh, ‘Fuzzy Logic and Soft Computing: Issues, Contentions

and Perspectives’, in Proc. of IIZUKA'94: Third Int. Conf. on Fuzzy
Logic, Neural Nets and Soft Computing, 1-2, Iizuka, Japan, 1994.

[2] L.A. Zadeh, ‘Some reflection on soft computing, granular computing
and their roles in the conception, design and utilization of
information/intelligent systems’, Soft Computing A Fusion of
Foundations, Methodologies and Applications, 2(1), 23-25, (1998).

 [3] D. Dubois and H. Prade, ‘Soft computing, fuzzy logic, and Artificial
Intelligence’, Soft Computing: A Fusion of Foundations,
Methodologies and Applications, 2(1), 7-11, (1998).

[4] P.P. Bonissone, ‘Soft Computing: the Convergence of Emerging
Reasoning Technologies’, Soft Computing A Fusion of Foundations,
Methodologies and Applications, 1(1), 6-18, (1997).

[5] P.P. Bonissone, Y.-T. Chen, K. Goebel, and P.S. Khedkar, ‘Hybrid
Soft Computing Systems: Industrial and Commercial Applications’,
Proceedings of the IEEE, 87(9), 1641-1667, (1999).

 [6] N. Rescher, Many-valued Logic, McGraw-Hill, New York, NY, 1969.

 [7] M. Black, ‘Vaguenes: an Exercise in Logical Analysis’, Phil.Sci. 4,
427-455, (1937).

 [8] L.A. Zadeh, ‘Fuzzy sets’, Information and Control, 8, 338-353,
(1965).

 [9] J. Lukasiewicz, Elementy Logiki Matematycznej [Elements of
Mathematical Logic], Warsaw, Poland: Panstowowe Wydawinctow
Naukowe,1929.

 [10] L.A. Zadeh, ‘Foreword’, in Handbook of Fuzzy Computation, E.H.
Ruspini, P.P. Bonissone, and W. Pedycz, Eds., Bristol, UK: Institute of
Physics, 1998.

 [11] E.H. Ruspini, P.P. Bonissone, and W. Pedycz, Handbook of Fuzzy
Computation, Bristol, UK: Institute of Physics, 1998.

 [12] Y-M. Pok and J-X. Xu, ‘Why is Fuzzy Control Robust’, Proc. Third
IEEE Intl. Conf. on Fuzzy Systems (FUZZ-IEEE'94), 1018-1022,
Orlando, FL, 1994.

[13] T. Bayes, ‘An essay towards solving a problem in the doctrine of
chances’, Philosophical Trans. of the Royal Society of London, 53,
370-418, (1763). Facsimile reproduction with commentary by E.C.
Molina in ‘Facsimiles of Two Papers by Bayes’ E. Deming,
Washington, D.C., 1940, New York, 1963. Also reprinted with
commentary by G.A. Barnard in Biometrika,. 25, 293-215, (1970).

 [14] E. Shortliffe and B. Buchanan, ‘A Model of Inexact Reasoning in
Medicine’, Mathematical Biosciences,. 23, 351-379, (1975).

 [15] R. Duda, P. Hart, and N. Nilsson, ‘Subjective Bayesian Methods for
Rule-Based Inference Systems’, Proc. AFIPS, 45,1075-1082, New
York, NY: AFIPS Press, (1976).

 [16] J. Pearl, ‘Reverend Bayes on Inference Engines: a Distributed
Hierarchical Approach’, Proc. 2nd Natl. Conf. on Artificial
Intelligence, 133-136, Menlo Park, CA: AAAI, 1982.

 [17] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, San Mateo, CA: Morgan-Kaufmann, 1988.

 [18] J. Kim and J. Pearl, ‘A Computational Model for Causal and
Diagnostic Reasoning in Inference Engines’, in Proc. Eighth Int. Joint
Conf. on Artificial Intelligence, 190-193, Karlsruhe, Germany, 1983.

 [19] A. P. Dempster, ‘Upper and lower probabilities induced by a
multivalued mapping’, Annals of Mathematical Statistics, 38, 325-
339, (1967).

 [20] G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ:
Princeton University Press, 1976.

 [21] L.A. Zadeh, ‘Probability Measures of Fuzzy Events’. J. Math. Analysis
and Appl., 10, 421-427, (1968).

 [22] Ph. Smets, ‘The Degree of Belief in a Fuzzy Set’, Information Science,
25, 1-19, 1981.

 [23] W.S. McCulloch and W. Pitts, ‘A Logical Calculus of the Ideas
Immanent in Nervous Activity’, Bull Math Biophysics, 5, 115-133,
(1943).

 [24] F. Rosenblatt, ‘The perceptron, a Perceiving and Recognizing
Automaton’, Project PARA, Cornell Aeronautical Lab. Rep., no. 85-
640-1, Buffalo, NY, 1957.

 [25] F. Rosenblatt, ‘Two theorems of statistical separability in the
perceptron’, in Proc. Mechanization of Thought Processes, 421-456,
Symposium held at the National Physical Laboratory, HM Stationary
Office, London, 1959.

 [26] F. Rosenblatt, Principle of Neurodynamics: Perceptron and the theory
of Brain Mechanisms, Washington, DC: Spartan Books, 1962.

 [27] M. Minsky and S. Papert, Perceptrons, Boston, MA: MIT Press, 1969.

 [28] P. Werbos, Beyond Regression: New Tools for Predictions and
Analysis in the Behavioral Science. Ph.D. thesis, Harvard University,
Cambridge, MA, 1974.

 [29] D. Parker, ‘Learning Logic’, Tech. Report TR-47, Center for
Computational Research in Economics and Management Science,
MIT, Cambridge, MA, 1985.

 [30] Y. LeCun, ‘Une procedure d’apprentissage pour reseau a seuil
symetrique’, Cognitiva, 85, 599-604, CESTA, Paris, France, (1985).

 [31] K. Hornick, M. Stinchcombe, and H. White, ‘Multilayer feedforward
networks are universal approximators’, Neural Networks, 2, 359-366,
(1989).

 [32] J. Moody and C. Darken, ‘Fast learning in networks of locally tuned
processing units’, Neural Computation, 1, 281-294, (1989).

 [33] T. Kohonen, ‘Self-Organized Formation of Topologically Correct
Feature Maps’, Biological Cybernetics, 43, 59-69, (1982).

 [34] J. Hopfield, ‘Neural Networks and Physical Systems with Emergent
Collective Computational Abilities’, Proc. Acad. Sci., 79, 2554-2558,
(1982).

 [35] A. Carpenter and S. Grossberg, ‘A Massively parallel architecture for a
self-organizing neural pattern recognition machine’, Computer, Vision,
Graphics, and Image Processing, 37, 54-115, (1983).

 [36] R. Jang, C-T. J. Sun and C. Darken, ‘Functional Equivalence Between
Radial Basis Function Networks and Fuzzy Inference Systems’, IEEE
Trans. on Neural Networks, 4(1), 156-159, (1993).

[37] E. Fiesler, and R. Beale, Handbook of Neural Computation, Bristol,
UK: Institute of Physics, and New York, NY: Oxford University Press,
1997.

 [38] I. Rechenberg, "Cybernetic Solution Path of an Experimental
Problem," Royal Aircraft Establishment, Library Translation no. 1122,
1965.

 [39] H-P. Schwefel, Kybernetische Evolution als Strategie der
Experimentellen Forschung in der Stromungstechnik, Diploma Thesis
Technical University of Berlin, Germany, 1965.

 [40] L.J. Fogel, ‘Autonomous Automata’, Industrial Research, 4, 14-19,
(1962).

 [41] L.J. Fogel, A.J. Owens, and M.J. Walsh, Artificial Intelligence
through Simulated Evolution, New York, NY: John Wiley, 1966.

 [42] A.S. Fraser, ‘Simulation of Genetic Systems by Automatic Digital
Computers. I . Introduction’, Australian J. of Biological Sci., 10, 484-
491, (1957).

 [43] H. Bremermann, ‘The Evolution of Intelligence. The Nervous System
as a Model of its Environment’, Technical Report no. 1 Contract no.
477(17), Dept. of Mathematics, University of Washington, Seattle,
1958.

 [44] J. Reed, R. Tooms, and N. Baricelli, ‘Simulation of Biological
Evolution and Machine Learning’, J. Theo. Biol., 17, 319-342, (1967).

 [45] J.H. Holland, ‘Outline of a Logical Theory of Adaptive Systems’, J.
ACM, 9, 297-314, (1962).

 [46] J.H. Holland, ‘Nonlinear Environments Permitting Efficient
Adaptation’, Computer and Information Science IIs, New York, NY:
Academic Press, 1967.

 [47] J.H. Holland, Adaptation in Natural and Artificial Systems,
Cambridge, MA: MIT Press, 1975.

 [48] J. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection, Cambridge, MA: MIT Press, 1992.

 [49] R.M. Friedberg, ‘A Learning Machine: Part I.’, IBM Journal of
Research and Development, 3, 282-287, (1958).

 [50] N.A. Barricelli, ‘Esempi Numerici di Processi di Evoluzione’,
Methodos, 45-68, (1954).

 [51] D.B. Fogel, Evolutionary Computation. New York, NY: IEEE Press,
1995.

 [52] T. Back, D.B. Fogel, and Z. Michalewicz, Handbook of Evolutionary
Computation, Bristol, UK: Institute of Physics, and New York, NY:
Oxford University Press, 1997.

 [53] D.B. Fogel, The Fossil Record, New York, NY: IEEE Press, 1998.

 [54] K. Forbus, ‘Qualitative Reasoning about Physical Processes’, Proc.
7th Int. Joint Conf. on Artificial Intelligence, Karlsruhe, Germany,
1981.

 [55] B. Kuipers, ‘Commonsense Reasoning about Causality: Deriving
Behavior from Structure’, Qualitative Reasoning about Physical
Systems, D. Bobrow, Ed., 169-203, Cambridge, MA: MIT Press, 1985.

 [56] E.H. Mamdani and S. Assilian, ‘An Experiment in Linguistic
Synthesis with a Fuzzy Logic Controller’, Int. J. Man Machine
Studies, 7(1), 1-13, (1975).

 [57] T. Takagi and M. Sugeno, ‘Fuzzy Identification of Systems and Its
Applications to Modeling and Control’, IEEE Trans. on Systems, Man,
and Cybernetics, 15, 116-132, (1985).

 [58] R. Babuska, R. Jager, and H.B. Verbruggen, ‘Interpolation Issues in
Sugeno-Takagi Reasoning’, Proc. Third IEEE Int. Conf. on Fuzzy
Systems (FUZZ-IEEE'94), 859-863, Orlando, FL, 1994.

[59] H. Bersini, G. Bontempi, and C. Decaestecker, ‘Comparing RBF and

fuzzy inference systems on theoretical and practical basis’, Proc. of
Int. Conf. on Artificial Neural Networks. ICANN '95, Paris, France, 1,
169-74, 1995.

 [60] J.S.R. Jang, ‘ANFIS: Adaptive-network-based-fuzzy-inference-
system’, IEEE Trans. on Systems, Man, and Cybernetics, 23, 665-685,
(1993).

 [61] T. Back, D.B. Fogel, and Z. Michalewicz, Handbook of Evolutionary
Computation, Bristol, UK: Institute of Physics, and New York, NY:
Oxford University Press, 1997.

 [62] E. Fiesler, and R. Beale, Handbook of Neural Computation, Bristol,
UK: Institute of Physics, and New York, NY: Oxford University Press,
1997.

 [63] P.P. Bonissone, V. Badami, K.H. Chiang,, P.S. Khedkar, K. Marcelle,
M.J. Schutten, ‘Industrial Applications of Fuzzy Logic at General
Electric’, Proc. of the IEEE, 83(3), 450-465, (1995).

 [64] K.A. De Jong, An Analysis of the Behavior of a Class of Genetic
Adaptive Systems. Ph.D. Thesis, University of Michigan, Ann Arbor,
MI. Also available as Dissertation Abstract International, 36(10),
5140B, University Microfilms no. 76-9381, 1975.

 [65] J. Grefenstette, ‘Optimization of control parameters for genetic
algorithms’, IEEE Transactions on Systems, Man, and Cybernetics,
16(1), (1986).

 [66] O. Cordon, H. Herrera, and M. Lozano, ‘A classified review on the
combination fuzzy logic-genetic algorithms bibliography’, Tech.
Report 95129, URL:http://decsai.ugr.s/~herrera/flga.html, Department
of Computer Science and AI, Universidad de Granada, Granada,
Spain, 1995.

 [67] M.A. Lee, and H. Tagaki, ‘Dynamic control of genetic algorithm using
fuzzy logic techniques’, Proc.Fifth Int. Conf. on Genetic Algorithms,
pp. 76-83. Morgan Kaufmann, CA. 1993.

 [68] F. Herrera and M. Lozano, ‘Adaptive Genetic Algorithms Based on
Fuzzy Techniques’, Proc. of IPMU'96, 775-780, Granada, Spain, 1996

 [69] R. Subbu, A. Anderson, and P.P. Bonissone, ‘Fuzzy Logic Controlled
Genetic Algorithms versus Tuned Genetic Algorithms: An Agile
Manufacturing Application’, Proc. IEEE Int. Symposium on
Intelligent Control, NIST, Gaithersburg, Maryland, 1998.

 [70] C.L. Karr, ‘Design of an adaptive fuzzy logic controller using genetic
algorithms’. Proc. Int. Conf. on Genetic Algorithms (ICGA'91), 450-
456, San Diego, CA., 1991.

 [71] L. Zheng, ‘A Practical Guide to Tune Proportional and Integral (PI)
Like Fuzzy Controllers’, Proc First IEEE Int. Conf. on Fuzzy Systems,
(FUZZ-IEEE’92), 633-640, S. Diego, CA, 1992.

 [72] P.P. Bonissone, P.S. Khedkar, and Y-T Chen, ‘Genetic Algorithms for
automated tuning of fuzzy controllers, A transportation Application’,
Proc. Fifth IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE’96), 674-
680, New Orleans, LA., 1996.

 [73] Appraisal Institute, Appraising Residential Properties, Part VI,
Chicago IL, 1994.

 [74] P.P. Bonissone and W. Cheetham. ‘Financial Applications of Fuzzy
Case-Based Reasoning to Residential Property Valuation’, Proc. Sixth
Int. Conf. On Fuzzy Systems (FUZZ-IEEE’97), 37-44, Barcelona,
Spain, 1997.

 [75] P.P. Bonissone, W. Cheetham, D. Golibersuch, and P.S. Khedkar,
‘Automated Residential Property Valuation: An Accurate and Reliable
Based on Soft Computing’, in Soft Computing in Financial
Engineering, R. Ribeiro, H. Zimmermann, R.R. Yager, and J.
Kacprzyk, Eds., Heidelberg, Germany: Physica-Verlag (Springer-
Verlag), 1998.

