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I. INTRODUCTION

A systematic study of nonequilibrium systems requires concepts and language compre-
hensive enough to embrace the vast collection of phenomena of interest. In our approach
(1, 2, 3, 4) the language is that of stochastic dynamics, whose only major exclusion is
quantum phenomena. Early emphasis in nonequilibrium studies was on the finding of over-
arching principles, analogous to entropy increase in equilibrium systems, for characterizing
the steady state of a system. One candidate was the minimizing of entropy production (5)
which, while valuable, was nevertheless limited in its scope (6). At the same time there
was an acute awareness that the openness of nonequilibrium systems led to self-organization
and the formation of structure. More recently has come an appreciation that structure
leads to more structure, culminating in qualitative changes in a system (emergence) often
characterized by an ill-defined or perhaps multiply defined notion of complexity.

In this article we present a stochastic dynamics approach to complex systems that is fully
reductionist. No general definition of complexity will be offered; nevertheless, we intend that
our considerations will help focus on the essential features of that idea.

II. THE STOCHASTIC FRAMEWORK

States of the system are modeled as points x, y ∈ X. There is an underlying stochastic
process with a matrix of transition rates R, such that Rxy is the probability that if the system
is in state y at time t it reaches x at time t+∆t, with ∆t usually taken to be one. We assume
that R is irreducible, so that its stationary state p0 is strictly positive (p0(x) > 0 ∀ x). For
nonequilibrium systems things can still “happen” in the stationary state and this feature
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is expressed by the existence of nonzero currents, Jxy ≡ Rxyp0(y) − Ryxp0(x), describing
flows of probability from one state to another. (In equilibrium one has detailed balance, the
vanishing of J .)

In general the only requirement for R is that matrix elements are nonnegative and that
columns sum to one. Irreducibility is a further convenience, and for physical, chemical and
biological systems we further require that Rxy > 0 if and only if Ryx > 0. Extremely unlikely
transitions, while unimportant for the process itself, may need to be not-quite-impossible
for evaluating dissipation.

Each state x is viewed as itself a coarse grain from some yet finer process and as a result
will possess an intrinsic entropy, which we designate s(x). This allows us to distinguish
transitions which, absent external driving forces (from reservoirs), would satisfy detailed
balance, i.e., Rxy exp[s(y)] = Ryx exp[s(x)].

III. INEQUALITIES

Numerous general results follow from the formalism of Sec. II. For example, one can
define the relative entropy of two probability distributions:

[1] S(p|q) ≡ −
∑

α

pα log
pα

qα

.

This quantity increases as a system approaches its stationary state, i.e., S(Rp|p0) > S(p|p0).
A recent result (7), bearing on complexity, is the following. Given a system as above,

select a pair of states, x and y, and change R in one of the following ways:

[2] Rxy −→ Rxy exp(ǫ) , or

[3] Rxy −→ Rxy exp(ǫ) and Ryx −→ Ryx exp(−ǫ) ,

with diagonal matrix elements adjusted to maintain unit column sums (and ǫ > 0). Then
in both cases Jxy increases. This seems intuitively obvious, but as for many results with
this flavor (e.g., the GKS inequalities) the obvious is not trivial. Other apparently obvious
results are not true. For example, one would expect that an increase of all matrix elements
leading into a given state and decrease of all matrix elements leading out would increase
the stationary probability in and total flow through that point. Nevertheless, although a
numerical check for random matrices larger than 11-by-11 did not reveal any exceptions to
this intuition, the obvious is in this case false. Proof of the inequality for the edge changes
given above proceeds using a representation of the stationary state in terms of spanning
trees. This formula is given in (1) and apparently dates to Kirchhoff (8).

Our interest in inequalities arises because rate changes can occur by lowering the energy
of a state or raising its entropy or by attaching a reservoir to a system. Such procedures
correspond to the use of catalysts and to the introduction of negentropic resources like the
sun.
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IV. THE BIG PICTURE

Complexity is observed at many levels: biochemical, cellular, ecological, social, economic
and others. The processes of life seem to be the most complex, but inorganic chemical
reactions or meteorology can give examples as well. For our purposes systems at equilibrium
have no complexity (9). As a result we necessarily deal with open systems, in contact with
multiple reservoirs. With respect to complexity on our planet, the obvious high-temperature
reservoir is the sun, a source of negentropy as well as energy, as emphasized by Schrödinger
(10). Other reservoirs exist, as became dramatically evident with the discovery of life in
underwater thermal vents (11).

Two features are thus associated with complex systems: nonzero currents (J) and reser-
voirs. The latter can be incorporated in a generalized or global detailed balance (4). Ordi-
nary detailed balance gives Rxy exp[s(y)] = Ryx exp[s(x)] (so that p0(x) ∝ exp(s(x))). This
extends to Rxy exp[s(y) + S(y, η)] = Ryx exp[s(x) + S(x, ξ))], with S the entropy of the
reservoir driving the x-y transition, and ξ and η reservoir states. Since the reservoirs are
not part of the system, detailed balance is lost; nevertheless, the associated entropies are
important in calculating dissipation.

In the grand scenario the sun provides energy in the form of photons, with relatively little
entropy per unit energy: the surface temperature of the sun is 6000 K, providing photons of
more than half an electron volt, enough to drive many biochemical reactions. This energy as
well as negentropy percolates through the system. Most of it either leaves earth as photons
of ∼300 K or is locked in structured objects, such as oil (chemical structure) or sea shells
(chemical and morphological structure).

A driving force of complexity is the progress of negentropy and energy through a web
of exploiters (12). To appreciate this we elaborate on the distinction between work and
heat, the essential dichotomy for the second law of thermodynamics. Work is energy in
macroscopic degrees of freedom, heat is energy in microscopic degrees of freedom. One can
consider work to be energy at infinite or very high temperature. Clearly these definitions de-
pend on the distinction between macroscopic and microscopic (perhaps through a definition
of coarse grains (13)), a distinction that is more system dependent than one might expect,
given the pre-eminence of the second law. Thus a leaf is able to use solar energy. Through
a series of reactions it converts this to sugars and other products that do work to provide
(or are) the structure of the tree itself, as well as a storehouse of energy for reproduction.
This structured (hence low entropy) energy is in turn exploited by others, from caterpillars
to koala bears. (Hence some of the tree’s efforts (14) must go into mechanisms of defense,
which as for the AIDS virus can themselves become opportunistic targets.) In this picture,
structure (chemical and morphological) is the tree’s form of work and creatures at the next
higher level use this as their resource reservoir (15). As a rule, inefficiency is punished. For
a negentropy source there generally evolves a system (virus, fungus, cow, etc.) that can
exploit it. Niches are filled to the extent possible. However, one must recognize that not
all is possible. The Sahara desert or the planet Venus are both recipients of prodigious ne-
gentropy fluxes (in the form of sunlight) but lack the infrastructure to exploit it. And there
are intermediate cases. Is water a primitive resource or should one include the function of
sunlight in natural desalinization and treat fresh water as a product? One might include
oxygen or CO2 in this question, given that their planetary levels today are the result of
interactions of systems driven by sunlight and other resources.

Where does complexity enter? In the competition for and in the sharing of resources, and
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in the filling of niches. The dung of a cow has enough structure and energy to be a resource
for certain beetles. The beetle that is best at using this resource will be the one that can
produce the most beetles of its own kind (provided it can defend itself against parasites and
predators). Moreover, if the beetle itself is efficient the work it produces (structured objects)
will provide niches for other creatures. The more efficient, the more niches. The (eventual)
occupants of these niches may be harmful or helpful, but the beetle that has both efficiency
and good fortune will develop symbiotic relations that will further its own cause. This same
story can be told at the sub-cellular level. The use of DNA for storage and transmission
of information represents the emergence of a successful biochemical mechanism from earlier
mechanisms using RNA (although RNA still plays a significant role). Photosynthesis, ATP
utilization, mitochondrial capture by cells, all represent situations where earlier versions
did not quite optimize resource use and gave way to systems in which the degradation of
negentropy was ever more gradual.

The interrelations among constituents of a system is a correlate of the niche-filling aspect
and leads to interdependencies and hierarchies that qualify as complex and which may be
difficult even to describe. One of the methods used by biologists, ecologists, economists and
others is the flow diagram. What happens to water? to nitrogen? Schoolchildren follow
water from ocean to clouds to land to rivers to oceans. Biologists entertain more elaborate
schemes (16, 17) showing the interplay of resources and actors.

Our expectation has been that the key to complexity lies in the currents, Jxy, that emerge
naturally from the representation we use. These currents are directly related (by projection)
to the currents and flows that appear in the descriptions recalled above. As candidates for the
characterization of complexity they are far richer than the single number one would get from
say, computational complexity. Besides the numerical values of the matrix elements, there
is topological information in the graph associated with a given J . Additionally, measures
of dissipation involve currents; for example, what we call Carnot dissipation (4, 8) can be
written

[4] D =
∑

xy

Jxy log
Rxy

Ryx

.

Thus in characterizing opportunities—niches—one can use the currents to spot places where
negentropy is not fully exploited. As discussed earlier, log (Rxy/Ryx) represents a change of
entropy in the transitions between y and x (so that Eq. [4] is analogous to electrical power,
“IV ”).

The goal, or perhaps dream, of this big picture, is a “theorem:” survival implies com-
plexity. We would like to use our framework to show that the fittest systems are those that
give rise to complexity. The measure of fitness however is not a simple number, and will
depend on details. Consider for example the quantity D above. It would not do to take
its minimization to extremes: zero D implies detailed balance. Small D can be achieved by
making either J small or the entropy jumps (log (Rxy/Ryx)) small. The latter is favorable. It
gives opportunities for niche filling, some of which may be beneficial to the existing process.
But small J is (generally) not favorable. If a system is too slow a faster albeit less efficient
one may overtake it in the race for survival. For the systems that do survive, it’s the niche
filling that induces complexity. As a theorem, our assertion could only be probabilistic, since
as we are all aware a few nuclear bombs could radically “simplify” our planet. Less evident
dangers may also exist; an imaginative and fortunately fictional possibility is Vonnegut’s
ice-nine (18). A second problem involves intrinsic limitations. For example, given the laws
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of physics and the resources of our planet, it may be that the system long ago attained a
maximum of complexity; subsequent changes have been fluctuations around that level. We
may be no more complex than dinosaurs, merely different. The contemporary emergence of
life-like functions on silicon (etc.) may represent an extension of the potential for complexity
at the microscopic level. Lacking a quantitative handle, it’s not possible to be definitive on
this point, even if one occasionally feels that the Windows operating system represents a
new and malevolent life form.

In our formal development two perspectives have been used, depending on whether or
not one wishes to include evolution. One approach is to take a given system, such as
the biochemistry of glycolysis or the interaction of koala bears and eucalyptus trees, and
analyze its fluxes and complexity using a fixed set of states and transition probabilities.
Alternatively, one can allow changes in the rules—a meta-stochastic process in which R is
itself a random variable—to watch the emergence of complexity as negentropy resources are
exploited. The latter is the more ambitious approach and involves an extension of our earlier
formalism. Nevertheless, this approach can be looked upon as an approximation to a much

larger version of the original formalism in which the space “X” includes the dynamics of
smaller units (atoms?) and gets closer to the basic laws of physics. For this larger space one
is interested not in the stationary state (which may never occur), but rather in the long-lived
metastable states, which the Rs of the meta-process have as their stationary states.

V. MODELS

To carry out the program described above we start with simple systems. An example,
drawn from ecology (19) (and applied more widely (20)), is the discrete-time logistic equation

[5] N(t + 1) = N(t) + rN(t)

(

1 −
N(t)

K

)

,

where N(t) is the population of say, rabbits, at time t, r is their reproduction rate and K
the “carrying capacity,” the number of rabbits supportable in the steady state in the area
of interest. As in the more familiar parameterization used in physics (x′ = λx(1 − x)),
with increasing r this system goes from a stable state with N = K (for 0 < r ≤ 2) to a
period-2 stationary state, to period-4 and ultimately to chaos and beyond (21). This can
be recast as a stochastic dynamics by coarse graining, putting populations into bins of size
Nmax/G, with Nmax the maximum for given r and K, and G the number of grains (22).
The transition probability from grain to grain is proportional to the number of points in the
image grain under the mapping Eq. [5]. The stochastic dynamics shows no currents (as a
function of increasing r) until the second period-doubling bifurcation, subsequent to which
there are increasing currents as well as loop structure (in J) that reflect the stationary orbits
of the system. Approaching chaos, the loop structure shows as much of the true structure
as the coarse graining permits. In parallel, an overall increase in current with r is found.
This model is obviously a warm up—for us as for ecologists. Additional actors should be
introduced, perhaps grass, lynxes, sunlight, water. Sunlight is the ultimate resource, both
for the growth of the grass and for the recycling of the water (although without a basic
water reservoir the sunlight would not help), so that if one used a “K” (as in Eq. [5]) for the
grass, it would no longer be a parameter, but a function of the state of the other systems—
leading to rules for coarse grained transition probabilities that reflected those dependencies.
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Barrier state

Catalyst−lowered barrier state

Product state

Ground state

FIG. 1: Schematic diagram of the context and action of a catalyst. The arrows represent the flow

of current when the G→B process occurs at higher temperature than the B→P process. For the

matrix R, non-zero matrix elements exist in both directions.

Similarly rabbits play the role of a reservoir for the lynxes. At this stage, study of this
system can help clarify the role of currents in the description of complexity. Whether it
can contribute to ecology is less clear. The mantra is that understanding complexity helps
understand everything ; nevertheless one would like more immediate benefits. Perhaps the
systematic definition of coarse grains (13) can lead to the identification of critical factors or
critical emergent quantities in such systems (as such quantities were objectively derived in
Ref. (13)).

The processes of life, studied at the biochemical level, should also reveal the sources of
complexity. Consider a model of catalysis, perhaps through the agency of an enzyme that
lowers energetic or structural (entropic) barriers. Fig. 1 is a schematic diagram of a typical
situation: a reaction is impeded by a barrier; in the presence of a catalyst the barrier is
lowered. For example, an enzyme that presents extended reactants to one another in such
a way that active regions come in contact, can be considered to have lowered an entropic
barrier. The situation in Fig. 1 can also be treated as a Carnot cycle, taking the process
G→B as occurring at temperature T1 and B→P at temperature T2, with T1 > T2. In the
course of P→G energy is released. This is the crucial step (the potential “profit”), and by
the usual estimates of Carnot efficiency one could draw work proportional to 1−T2/T1 from
this transition. One form this work could take is the creation of structure in the form of
the creation of additional enzymes, either for this very process or for others. The portion of
energy not so used (or otherwise exploited as work) is wasted and will show up as dissipation
through the extreme smallness of the transition probability from G directly to P. Within this
context one can also recall the concept of catalytic power (23), and relate it, as expected, to
rate variation and entropy shifts (specifically when a barrier is lowered, there is an increase
in rate, usually related to the increase in entropy (7)).

A process that could directly produce its own catalysts could take over the world! Phys-
ically the common situation is that the catalyst produced by one reaction helps in another.
If a sequence of such directed links closes on itself, the consequences are twofold: the set of
reactions is speeded up and the interdependency creates (or is) complexity.
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Another biochemical source of complexity is the ladder. This mundane concept plays
a role when available energy packages are not big enough for the task at hand. Suppose
the “task” is to overcome a barrier of height EB, but the energy-source temperature is
only kT ∼ EB/2. The waiting time for this process is on the scale of exp(EB/kT ). With
an appropriate ladder this can be reduced to ∼ 2 exp(EB/2kT ). Here is the principle: a
“ladder” consists of a pair of levels, call them a and b, interposed between G and B, whose
role is to help the system “climb” from G to B. Take Ea ∼ (EB−Eb) >∼ EB/2 (EG = 0 and the
connections are G↔ a ↔ b ↔B, an extension of Fig. 1). In the temperature-T environment
the system (relatively) easily climbs to the a state. From a it can fall back to G or it can drop
to b. The latter drop takes place at a much lower temperature. Such a situation is commonly
encountered when a molecule is excited (to a) by an external source (relatively high energy
photons, say), but once in a drops to b through the emission of phonons—relaxation of the
molecule, with a cool solid or solvent carrying away the phonons. Once in the state b it is
again well-coupled to the external photons and makes its second jump, to B. This system
can easily be modeled as a stochastic process, allowing the system, once in the barrier state,
to drop to the product state and finally back to the ground state, as in Fig. 1 (but now with
a and b levels interposed between the ground and barrier states). If the temperature in the
a → b drop is about a tenth of the external source temperature (for reasonable energy-level
values) the current can increase by a factor 4. Intuitively this is easy to understand: a ladder
is useful if you do not slip or bounce on the rungs. An example of the use of the ladder
principle is the breakup of glucose by a series of ATP-induced processes. (The fragmented
glucose is used to convert ADP to yet more ATP, but this is part of the “work” phase of
this cycle.) A second biochemical example is photosynthesis (17).

Another model that we have studied is ecological: koala bears and eucalyptus trees.
The trees benefit from external sources (sunlight, water), while the bears get all sustenance
from the trees. Here we looked at the meta-stochastic process. Starting with little coupling
between the two systems, random “evolution” was allowed. Matrix elements in the combined
system were allowed to increase or decrease and the satisfaction level (number of individuals,
biomass) of each species tested as to whether a given “mutation” would survive. Feedback
from bear to tree was also allowed, for example, the bear might serve as a source of fertilizer
for nutrients needed by the tree. Important features of the real world were absent in these
simulations; nevertheless, it was found (24) that as satisfaction levels increased, so did
currents.

VI. EFFICIENCY AND COMPLEXITY

As seen in Secs. IV and V, lowering dissipation can lead to increased participation by other
actors: beetles to take care of waste products, arbitrageurs, coupled creators of mutually
beneficent enzymes. Clearly these lead to an increase in currents, and according to our
intuitions, to complexity. How to measure this notion?

First one must consider whether currents ought to be sufficient for the characterization.
From J alone it is not possible to recover R (nor D, [4]). Nevertheless, we focus on J ,
bearing in mind the utility of rate equations in chemistry, equations derivable from the
currents alone, ignorant of more detailed mechanisms of a reaction.

Comparing two Js and their associated graphs, if one graph is a subset of the other with
proportional currents, then one would consider the larger graph the more complex; a partial

order is clearly possible. To go beyond this, perhaps to a topological definition or perhaps
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FIG. 2: Self-similar graphs.

to a single number, further considerations should be invoked.
Recalling the ease of definition of information based on simple axioms (25) (easier in

retrospect than prospect), we consider what complexity, to be called C, should satisfy. First,
extensivity would be inappropriate: one grass seed will (eventually) create the same lawn
as two identical seeds. So there needs to be a combining rule that makes two cats more
complex than one cat but less complex than one cat and one grasshopper. This suggests
that while entropy (or information) is the logarithm of a large number, C ought to be log-log.
A second requirement or axiom has to do with coarse graining. In discussing this, we make
the point that complexity is the complexity of a description. The ecologist who wants to
compare the complexity of the rain forest with that of a wheat farm will not have reason to
include internal cellular processes (although genetically modified crops are changing this).
So one expects that coarse graining, smearing out the most detailed information, should

reduce C by an order unity fraction of itself. A precise version of this requirement can be
formulated for the case where J (+) has self-similar structure. Thus in Fig. 2 eliminating (all
3 sides of) the topmost triangle of the 2-dimensional illustration would create two copies
of a simpler object, which should have the complexity of a single exemplar of that simpler
object (perhaps with a log-log correction, just as entropy is extensive up to surface effects).
However, coarse graining (say) the bottom-most row creates the same object, presumably
giving the same value for complexity. This argument assumes the values of the currents are
similarly scaled.

This leads us to discuss overall scales. For the systems considered, X will usually be a
product space. There is some number, M , of individual actors (atoms, cells, people, species,
. . .); these have a variety of internal states. For simplicity we take these all of the same
finite cardinality, say K. This gives X (which is a product of the “actor” spaces) dimension

N ≡ KM . Let J
(+)
xy = (Jxy +|Jxy|)/2, the matrix of positive currents. The maximum number

of non-zero components of J (+) is N(N − 1)/2, but they are not independent: the sum of
in- and out-currents at each vertex must be equal, yielding N − 1 constraints (since one
equality is redundant). The graph of J (+) will thus have E (≤ N(N − 1)/2) directed edges
with E − N + 1 independent quantities.
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A number of possibilities for defining C have been considered, none quite right (as far as
we can tell) but each embodying to some extent the ideas discussed above.

It is often informative to write J (+) in terms of its loops. We have considered loop
decompositions of J (+) in a number of ways. Numerically a decomposition can be found by
selecting the edge with the smallest current and completing a non-self-crossing loop. Remove
this loop and continue. Other decompositions are possible using bases generated by trees (8).
A decomposition of J (+) has the general form J (+) =

∑

α uαJ (+α), where J (+α) is the current
associated with the permutation operator around the loop α. Generally, for graphs beyond
the simplest, the expansion is far from unique and in fact the set of coefficients {uα} form
a simplex of high dimension. Each uα has minimum value 0 and a maximum that depends
on J (+). A definition of C could involve properties of this simplex, for example the log-log
of its dimension or (appropriate logarithms of) sums over functions of the uα’s.

Another, and computationally preferable method, works directly from the components of
J (+). Let L be the set of all possible loops and T the set of all distinct connected subgraphs
of the graph, G, of J (+). Consider an individual graph α ∈ S, where SS is either L or T .
Go through G and find all exemplars of α. With each of these associate a current or current
matrix, namely the maximum current (matrix) on this graph consistent with the original
J (+). (If α is a cycle this will be the minimum value of J (+) along the cycle. For other
graphs the determination may be more complicated.) A candidate for C is the following

[6] C = − log

[

−
∑

S

log
∑

α∈S

∏

k

j(k)
α

]

,

where j
(k)
α is the current along edge k of the graph or loop α. A form that seems to work a

little better looks only at the loops and drops the product in Eq. (6):

[7] C = − log

[

−
∑

L

log
∑

α∈L

jα

]

,

with jα the maximal current through the loop α. Both definitions have the property that two
identical grass seeds increase C only slightly, while an apple and a grass seed will give rise to
many different sorts of structures and increase C more markedly. Non-interacting cats will
be like non-interacting grass seeds, but slightly interacting cats (giving rise to many, many
new structures) will nevertheless not increase C disproportionately, because of the presence
of the actual current values in the products.

VII. DISCUSSION

In this picture complexity arises in the exploitation of resources. Exploitation includes
secondary resource creation, competition, sharing and degradation. Because our focus has
been on natural systems, the basic rules are the first and second laws of thermodynamics as
well as other relevant constraints from physics and chemistry. An economic or sociological
model would identify other resources and constraints.

Efficiency, meaning the minimizing of dissipation, plays an ambiguous role. An efficient
process wields a two-edged sword. Like any non-equilibrium system or subsystem it operates
between reservoirs, perhaps the primary reservoirs of sun and outer space or more frequently
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between intermediate constructs, like food and feces or ATP and ADP. Consider the fruit
of a tree. Its structure and content are part of the work produced in the Carnot cycle in
which the tree exploits its reservoirs. The efficient tree will produce many, rich fruits. These
will be reservoirs for other creatures. Some of these may be pathogens that gain a foothold
in the fruit and go on to destroy the tree. Others may eat the fruit and in their feces spread
the seeds, to the tree’s ultimate advantage. The system lucky enough to have productive
symbiotes will survive. Being efficient in this case ensures more tries at the dice table.
But there is a downside to efficiency, at least as defined through Eq. [4]. That expression
also contains the currents, which is to say that efficiency is gained by slowing down. (In
the textbook Carnot cycle the processes are ”quasi-stationary,” ensuring reversibility). In
the world of competing and self-reproducing processes (whether animals or enzymes) speed
does matter: the quicker process will grab the resources even if its use of them is less
efficient. There is nothing wrong with the ambiguous role played by efficiency: compromise
is the essence of good engineering (and a fortiori of politics and economics). Nevertheless,
these considerations do imply that there is no general principal to the effect that efficiency
implies survival. What does emerge though is that the role of efficiency in survival enhances
complexity. This is because the virtue of efficiency is felt when another player is able to
make use of the work product in a way that enhances the survival of the producer. Such
interdependencies are the essence of complexity.

The general discussion of the previous paragraph can be realized in greater detail in one
of the models discussed above. Fig. 1 shows a ground state (G), barrier (B) and product (P).
Recall that the process G→B occurs at higher temperature than B→P. A higher energy
value for P is better, in that it allows more work, here proportional to the P-G energy
difference. On the other hand, raising P slows the process, allowing more backtracking (the
reverse reaction, P→B, can dominate, depending on the energies and temperatures). The
exploitation of the work can take various forms. For example, the work produced could be
expressed as a part of the product, P, which could be a catalyst. If it is a catalyst for the
G→B→P reaction the process will take off, limited only by available resources, perhaps a
supply of the constituents of G or by the reservoirs being less than ideal and having finite
capacity. If the product is a catalyst for some other reaction, that other reaction could
itself be producing a catalyst. If a network of such catalysts closes one obtains a successful
“creature,” perhaps meriting the name “life.”

Remark: In a complex system it is often the case that the utility of a structure or process
is expressed at the next higher level of organization relative to the process you’re studying.

Remark: It seems that randomness is remarkably adept at exploration. Although they
cannot literally be true, to a good approximation the following maxims appear to be obeyed:
Everything is possible becomes actual—if you can wait long enough.
Things must happen because they can happen (same temporal limitation).

Finally, we struggled with ideas for a definition of complexity. We expect that its def-
inition should be richer than that of algorithmic complexity, and should express the level
of interconnectedness and interdependencies of a system, not just the instruction set for
creating the system—the amount of effort it takes to use those instructions must addressed

as well. Unlike entropy and the related concept of information, complexity is not extensive,
nor is it entirely intensive. Twenty cats will be more complex than one. The entropy per
unit volume of 20 blocks of ice will be the same as that of one block, up to surface effects
that will be entirely negligible for a macroscopic piece of ice. The twenty cats however
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will develop relations among themselves that qualify for an additional level description and
interdependence.

For this reason our tendency has been to say that as entropy is log, so complexity is
log-log. Unfortunately we don’t know what it is the log-log of. What is clear though is that
complexity is the complexity of a specific description, which is of course dependent on the
technology and subjective capabilities of the observer. In any case, we presented candidates
for a quantitative notion of this “C”; for each of them we found ways in which it captured
desired features and ways in which it fell short.
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