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INTRODUCTION

Some Attractive Features of the
Dynamical Modeling Strategy

There is a revolutionary new strategy of mathematical modeling of
systems called dynamical systems theory. While its roots reach back to
Newton, Rayleigh, and Poincaré, the past two decades have witnessed a
revolution in its language, concepts, and techniques for dealing with

complex cooperative systems evolving through multiple modes of

dynamical equilibrium (static, oscillatory, and chaotic). Hence, their
applicability to all scientific disciplines which have increasingly in the
same period come to be understood in a similar light of synergistic
cooperative systems, from quantum physics and cosmology, to biology,
psychology, and sociology. The mathematics provides models, simula-
tion, cognitive strategies, and intuitively clear geometric representations
for complex systems. It also serves as a unified philosophic view for
integrative, hierarchically organized systems, and for dissipative, irrever-

sible, evolutionary dynamics. In short, it is a world view as well as an

elegantly simple modeling strategy. It is emerging as the metalanguage,
the metaparadigm, of science. Several essential features contribute to

this developing hegemony.

The first is that instead of looking at a static object or event as a thing to
be explained, it looks to a set of complex evolving relationships as both

the subject, the object, and the explanation, holistic and dynamical.
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A second feature is that nonlinear dynamics takes an essential set of rules

(e.g., equations, usually ordinary differential equations) defining those
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relationships and shows how very different types of organization in those
relationships can emerge from those same rules, as a critical feature
(control parameter) changes. These changes in system organization or
performance are called bifurcations. That is, the evolution of a system
can be gradual most of the time, but be punctuated by these dramatic
bifurcations as the control parameter passes through critical thresholds
(bifurcation points). Thus, saltatory or step-wise evolution is seen as
natural, not magical. It derives from orderly principles; extraordinary

events external to the system need not be invoked to explain it.

Third, causality is considered multilevel and multideterminate. Any
level or domain of observation or theory may communicate with others
without necessarily going through a linear causal chain as from micro-
scopic to macroscopic, from subatomic to cosmological or social, from
independent to dependent variable, from stimulus to response, admit-
tedly rather outdated concepts anyway. Dynamical theory is very well
disposed to relating several levels of observation. The language of reduc-
tionism and independent and dependent variables gives way to the
language of dynamical interactive variables. Interactions include the sys-
tems concepts of feedback and control, which lead to the fourth main
feature.

This fourth feature, self-organization, derives from combining the con-
cept of feedback and the concept of the control parameter. This occurs
when the value of the control parameter depends on the state of the system;
the system has control over itself. In psychological and social systems,
individuals and societies become aware of critical control parameters

and learn to control them for self-improvement (hopefully).

A fifth feature is that the visual geometric dynamical approach is highly
communicative, requiring mathematical maturity, but without requiring
a great deal of technical mathematical sophistication. Currently, the

various modeling strategies in science have become quite provincial in
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two senses. The first is that their idiosyncratic and complex languages
make communication difficult. The second is that the technical difficulty
of any scientific enterprise usually confines it to the study of but a few
levels and variables out of the many involved. The dynamical modeling
strategy attempts to transcend these limitations without the danger of
limiting heterogeneity in science. Computer programs for theoretical
simulation, data treatment, and graphic display have simplified the
communication process. Dynamical modeling should help to increase
communication among disciplines and to increase the ability to interre-

late findings in different disciplines.

A sixth and final critical feature that we will focus on here, is the
importance of chaos. Dynamical theory describes three main types of
temporal organization or attractors: fixed, cyclic, and chaotic. Science
has tended to emphasize fixed and cyclic behavior, but recently there has
been a growing appreciation of more complex ‘chaotic’ temporal struc-
ture. Chaotic processes transcend the usual tendency of our ex-

perimental designs to dispose of them as random Gaussian, Poisson, or

other forms of ‘error’ distributions messing up our experiments. Non-
linear dynamics thus provides us with a perspective for recapturing much
that was lost to such conceptual and experimental limitations. It has
implications for improved experimental designs emphasizing multiple
measurements over time. Studying changes in states over time has long
been considered important, but previously we have been impoverished
without adequate conceptual, empirical, or linguistic (communicative,

computational, or graphic) tools with which to exploit this point of view.

This volume is designed as an introduction both for those considering
the use of this approach for their own research and those interested in
becoming a bit more fluent in the language and concepts of dynamical
theory. The emphasis on visual representation makes the technical ideas

intuitively accessible and usable. Symbolic notation and equations of
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Dynamics

algebra and calculus are kept to a minimum and mostly collected into
the optional appendix. While vector calculus provides the foundation of
the subject, fluency in calculus is not assumed on the part of the reader,
but will be helpful to those wishing to go deeper into the subject. The
visual approach can be obtained more completely from Abraham &
Shaw (1982-1988), and the mathematical-symbolic approach can be
obtained more completely from works cited there, from Thompson &
Stewart (1986), or from a good computer simulation program such as
Dynasim (Abraham, 1979), Dynamical Software (Schaffer, Truty, & Ful-
mer, 1988, or Chaos Demonstrations (Sprott & Rowlands, 1990) for
personal computers, or the emerging programs available for worksta-
tions with outstanding graphic engines (unpublished programs by
Stewart and others). As an elementary tutorial, it should be appropriate

for those just getting interested in dynamical systems.

This volume represents a condensation of Abraham & Shaw, Dynamics
The Geometry of Behavior, 1982-1988, and is adapted from there and
from Abraham & Shaw (1987) and from Abraham, Abraham, & Shaw,
A Visual Introduction to Dynamical Systems Theory for Psychology, 1990.
All figures are taken from these sources (as per back of title page) unless

explicit citation specifies otherwise.
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DYNAMICS

A. DEFINITIONS OF ELEMENTARY TERMS

1. STATE SPACES

Most systems investigated in science involve sets of interacting factors.
They can be as straightforward as the interaction of position and velocity
in a péndulum, or as complex as the interactions within a living cell, its
communication with other cells and their environment, and the com-
munications between individuals in social organizations. The process of
modeling such systems is familiar enough to us. Some aspects are real
(observable variables), while others may be imaginary (intervening or
hypothetical variables), and we try to discover as many of these as
possible and characterize the relationships between them (MacCor-

quodale & Meehl, 1948). A system, then, is a set of such variables whose
values change over time.

Figure 2 A
STATE SPACE

The state space

is the graphical
representation of all
the possible states of

the system, that is,

all values of all
the variables under hd
consideration, here

shown as a 2D
Euclidean plane with
one of the observed ——
states indicated.
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Figure 3. TIME SERIES

The changes in state observed over time may be represented by a conven-
tional time series, the state space shown (vertical planes) as a function of time
which is given its own (horizontal) axis.
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Figure 4. VIEWING THE TRAJECTORY

The trajectory may be obtained from the time series by viewing straight down
the time axis from infinitely far away.
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2. TRAJECTORIES AND PHASE PORTRAITS

Figure 5

TRAJECTORY

A trajectory shows a
history of the states
of a system from a
given initial state.
The time axis is
removed, and time
is indicated by the
use of arrows and
time labelling.

Figure 6

PHASE PORTRAIT

The state space,
filled with
trajectories
generated by a
given model for
different initial
states
(only a few
representative
ones are
usually drawn).
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3. VECTORFIELDS AND DYNAMICAL SYSTEMS

Dynamical systems are systems with special qualities. To describe these
properties it is necessary to introduce some special kinds of vectors. If
we take any two points (vectors) on a trajectory, the difference between
them is a new bound vector (Fig. 7). As mentioned before, the rate of
change in each variable is reflected in the distance between points. This
rate, or average velocity of the change of state may be represented by
an average velocity vector, which is the bound vector divided by the

interval of time, to yield the rate of change in each variable per unit of

time. So now we have an average velocity vector representing rate of

change of the state variables which can be represented numerically, as

Figure 7
BOUND VECTOR

The states observed at two different
times may comprise a bound vector,
denoted here by the pointed line seg-
ment, C.

Figure 8
AVERAGE VELOCITY VECTOR

The average velocity vector is the
bound vector divided by the elapsed
time, T, between to and t1, v = ¢/T.
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just calculated, or visually in the state space (Fig. 8). The average velocity
vector, thus, represents the average rate and direction of the change in

the state of the system between two points in time.

Now suppose we make our measurements continually in time, or decide
our trajectory may be represented by a continuous model. Further,
suppose we allow the time for the second point in time to get closer and
closer to our first point in time. As this time shrinks, the average velocity
vector becomes a tangent vector at the first point in time (Fig. 9). It is
also called the instantaneous velocity of the trajectory at that point in
time, representing the instantaneous rate and direction of change in the

state of the system at that point in time.

Figure 9

TANGENT VECTOR

The instantaneous velocity,

or tangent vector,

is the limit vector that V tends to

as the elapsed time, T,

shrinks infinitesimally small.

What does this tangent vector tell us? Why have we derived it from the
trajectory under the pretense of having a continuously instead of a
discretely changing variable? What is the information contained in the
instantaneous velocity vector? Simply this. It tells us the tendency of the
system to change when in that state. It says in what direction and how fast

the system should change on all variables simultaneously. It represents
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11 Dynamics

the forces which generate the trajectory. It moves the system to the next
point on the trajectory where the next vector governs its next move. This
process of deriving this instantaneous velocity vector is known as dif-
ferentiation in vector calculus (the use of calculus will not be employed
here; only the visual or geometric interpretations of dynamical systems
are used which are hopefully intuitively clear without an extensive
knowledge of calculus).

The modeling process begins with the choice of a particular state space
in which to represent observations of a real system. Prolonged observa-
tions lead to many trajectories within the state space for differing initial
points. At any point on a trajectory, a velocity vector may be drawn. This
was the new method of fluxions of Newton. This calculus is the founda-
tion of dynamics. It was also developed by Leibniz whose notation proved
more accessible. It represents the inevitable culmination of the ex-
perimental work of Galileo. and Kepler who inaugurated the modern
study of the development of time and motion. The velocity vector
describes the inherent tendency of the system to move at each point in

the state space. The prescription of a velocity vector at each point in the

Figure 10
VECTORFIELD

A vecrtorfield is a field of bound
vectors, one defined (and bound

to) each and every point of the
state space.. Usually, as here,

only a few are drawn to suggest
the full field.
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state space is called the velocity vectorfield (Figs. 10 & 11). The velocity
vectorfield is derived from the phase portrait by differentiation. The
phase portrait may be obtained from the dynamical system by integra-
tion. The phrase dynamical system specifically denotes the vectorfield.

Figure 11. TANGENT VECTORS AGREE WITH VECTORFIELD

A trajectory has a velocity vector at every point along it that agrees with
the vectorfield. The trajectory evolves from the initital state, at time to,

so as to be tangent to the vectorfield at each point.
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Dynamics

If there are some regularities to the observed patterns in the phase
portrait and the vectorfield, then it may be possible to model the dynami-
cal system by ordinary differential equations. These properties
(hypotheses) are:

Hypothesis 1. The observation of the system over time,

represented as atrajectory in the state space, has the property
that at each of its points, its velocity vector is exactly the same
as the vector specified by the dynamical system.

Hypothesis 2. The vectorfield of the model is smooth.

Figure 12
MANIFOLDS

Generalized state
spaces, manifolds,
may include curved
surfaces. Here a
trajectory remains
on the surface
while the tangent
vectors project off
of it.
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4. ATTRACTORS, BASINS, SEPARATRICES,
REPELLORS, SADDLES

Experimental trajectories may present patterns if the systems have any
regularity to their behavior. The task of the scientist is to discover those
patterns; that of the modeler to discover reasonable models approximat-
ing the same patterns. A simple taxonomy of some common patterns can
be given. A point with a zero instantaneous velocity vector is a special
kind of trajectory called a constant, critical point, rest point or fixed point.
If all nearby trajectories tend to that point, it is called a fixed point
attractor or static attractor (Fig. 13). It can represent static equilibrium
and homeostasis. The portion of the state space occupied by trajectories
approaching the attractor is called the inset or basin of the attractor. If
all nearby trajectories depart the region around the limit point, it is called
a static or point repellor (Fig. 14). The set of departing trajectories and
the state space they occupy is called the outset of the limit point.

Figure 13 A / |
|
FIXED POINT T
ATTRACTOR / N |
i |

All nearby trajectories ap- / ' !
proach this limit set, the

fixed point attractor, just

like the one shown. They !

comprise its inset. i
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15 Dynamics

The phase portrait may have a limit cycle. If all trajectories approach this
limit cycle, itis a periodic attractor (also cyclic attractor) and represents
periodic equilibrium (Fig. 14). Except for the critical point in the center,
the point repellor, the trajectory from every single initial state evolves to
the periodic attractor. The inset includes the disk inside the attractor and
the open annulus outside it. Note how this portrait differs from that of
Fig. 15 which also shows a cyclic attractor. Here the point in the center
is also an attractor. Between the fixed point attractor and the periodic
attractor there is another exceptional limit set, also a cyclic one, a
trajectory that tends to neither attractor, but separates the basins of the
two attractors. It is a separatrix. It is also a cyclic (periodic) repellor.

Figure 14

STATIC REPELLOR &
CYCLIC ATTRACTOR

The limit point in the cen-
ter is a repellor. All nearby
trajectories depart and ap-
prach the cyclic attractor
and comprise its outset.
All trajectories from both
inside and outside com-
prise the inset of the cyclic

attractor.
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The inset of an attractor is its basin, that is, it is comprised of trajectories
tending to that attractor. The probability that any initial state will ap-
proach an attractor is proportional to the volume (or the length or area,
depending on the dimensionality of the state space) of its basin. Phase
portraits will often have more than one basin (Figs. 15 & 16A). Any
points or trajectories not in any basin (i.e, not tending toward any
attractor), by definition belong to a separatrix. If the separatrix separates
basins, as in Figs. 15 & 16A, it is an actual separatrix, else it is a virtual
separatrix.

Figure 15. BASINS & SEPARATRIX

This is a phase portrait with a periodic repellor as a separatrix between

the basins for the cyclic attractor and the fixed point attractor inside.
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17 Dynamics

There is another type of limit set that is neither an attractor nor a
repellor; rather, it has both properties. These are called saddles. Fig. 16A
shows a saddle point flanked by two fixed point attractors. Insets to
saddles are separatrices. In this case, they comprise a virtual separatrix
between two basins. Unlike the stable fixed point attractors, fixed point
repellors and saddles points are inherently unstable. Homeostasis is a
fixed point attractor. A pin on its point falls with the slightest perturba-
tion. The rider falls back into the saddle when perturbed antero-

Y
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Figure 16A. SADDLE POINT

This is a phase portrait with two fixed point attractors. The third point is
a saddle, not an attractor: some nearby trajectories approach it, but others
depart. The insets to this saddle point comprise the separatrix. The outsets
of the saddle belong to the insets of the point attractors.

1/25/92
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posteriorly along the saddle inset and falls onto the ground when per-
turbed laterally along the outset of the saddle.

Insets of saddles (exceptional limit sets) are separatrices, since they are
not tending to attractors. Suppose a saddle point flanked, as in Fig. 16B,
by a repellor and an attractor (or another saddle), out of view to the
southwest, and assume that except for the inset to the saddle, all nearby
trajectories tend to that southwest limit set. Then note that the insets of
the saddle do not separate basins and thus comprise a virtual separatrix.
(Test yourself by comparing right and left panels of Fig. 80 as to which
possess actual versus virtual separatrices).

Chaotic attractors are attractors that are neither fixed nor cyclic. Discus-
sion of them is deferred. For now, winter arrives, and our equestrienne/-

an becomes an alpine skier.

Figure 16B. VIRTUAL SEPARATRIX

Insets to a saddle that fail to separate basins because all nearby trajectories
tend toward a saddle or attractor off to the southwest, constitute a virtual

separatrix.
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19 Dynamics

S. GRADIENT SYSTEMS

The gradientoperation of vector calculus provides dynamical systems of
an especially simple type called a gradient system. These systems have an
auxiliary function, called the potential Junction. The velocity vectorfield
is simply the gradient vectorfield of this potential function.

Figure 17

THE POTENTIAL
FUNCTION f

The state space, in this ex- Ao +rRlA m 12
ample, is the plane. The T i

potential function is a i

function from the state i i e S T + 1
i
i

space to the real number T
line. To each point in the

state space, it assigns a real - i
number. This number is ' i
the potential of the cor-
responding state.

FIGURE 18

3D
REPRESENTATIONOF
THE POTENTIAL AS A
FUNCTION OF THE
2D STATE SPACE

From each state in the
horizontal plane of the [ A 7\ // // //
state space, move vertical- I+ 77

ly a distance equal to the A A A AR A A
potential of that point. (L L L L/
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The graph of a potential function on a planar state space is a surface in

three-dimensional space, called the potential surface. We may think of

this as a landscape.

Figure 19

THE POTENTIAL
SURFACE

The potential function
may be visualized as a
potential surface, here
shown for some particular
example with two valleys
and a saddle ridge in be-

tween.

FIGURE 20
LEVEL CURVES

The intersection of
horizontal planes with the
potential surface create

level curves on the surface.
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Dynamics

Figure 21
CONTOUR CURVE

Next, project each
level curve down onto
the plane of the state
space. This curve in the
state space, also called
a contour curve, con-
tains every state with
the same value of the

T potential function.

LZ L L7 / This curve may be
i & i / . .

ZZ RSy -~ labelled with its com-

< LI 7 mon value of the

potential.

Figure 22. CONTOUR MAP

Repeat for each of the level curves
yielding the contour map of the
potential surface on the horizontal
plane, here viewed from below.

Finally, remove the contour map
from the three dimensional con-
text. This is an alternative repre-
sentation.
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The gradient dynamical system for this particular potential function is

derived as follows.

Figure 23
TRAJECTORIES

Place skiers on the
upper edge of the
snow bowls and let
them schuss the fall
line (take the
steepest grades
down) and note
their tracks (trajec-
tories). Their
speed (vector of
the vectorfield) is
proportional to the
steepness of the
slope at each point.

Viewed by Ulla,
the ski goddess,
from far below,
their tracks appear
to move over the
contour map at
right angles to

the contours.
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These trajectories, perpendicular to the contours, comprise the phase
portrait of the gradient dynamical system. Gradient systems, generally,
are much like this example. Their limit sets are usually equilibrium points
(fixed point attractors). A limit cycle is impossible, as the skier cannot
keep going downhill and still return to some earlier point (except in an
Escher print). Although gradient systems are useful in some elementary
science problems, their usefulness is severely limited by the lack of cyclic
and chaotic limit sets.

Figure 24. PHASE PORTRAIT

The phase portrait for the gradient system
has two basins with a point attractor in each.
Between them is a limit point of saddle type,
a saddle point. This corresponds to the point
on the ridge between the two valleys. The
inset of the saddle point is the separatrix
dividing the state space into the two basins.
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