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ABSTRACT

Finite systems of deterministic ordinary nonlinear differential equations may be designed to represent
IO . forced dissipative hydrodynamic flow. Solutions of these equations can be identified with trajectories in
i - phase space. For those systems with hounded solutions, it is found that nonperiodic solutions are ordinarily
Lo ) unstable with respect to small modifications, so that slightly differing initial states can evolve into consider- |
; ‘ ably different states. Systems with bounded solutions are shown to possess bounded numerical solutions, ‘

A simple system representing cellular convection is solved numerically. All of the solutions are found
to be unstable, and almost al! of them are nonperiodic.

The feasibility of very-long-range weather prediction is examined in the light of these results,
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1. Introduction

Certain hydrodynamical systems exhibit steady-state
flow patterns, while others oscillate in a regular periodic
fashion. Still others vary in an irregular, seemingly
haphazard manner, and, even when observed for long
periods of time, do not appear to repeat their previous
history.

These modes of behavior may all be observed in the
familiar rotating-basin experiments, described by Fultz,
el el. (1959) and Hide (1958). In these experiments, a
cylindrical vessel containing water is rotated about its
axis, and is heated near its rim and cooled near its center
in a steady symmetrical fashion. Under certain condi-
tions the resulting flow is as symmetric and steady as the
heating which gives rise to it. Under different conditions
a system of regularly spaced waves develops, and pro-
gresses at a uniform speed without changing its shape.
Under still different conditions an irregular flow pattern
forms, and moves and changes its shape in an irregular
nonperiodic manner,

Lack of periodicity is very common in natural sys-
tems, and is one of the distinguishing features of turbu-
lent flow. Because instantaneous turbulent flow patterns
are so irregular, attention is often confined to the sta-
tistics of turbulence, which, in contrast to the details of
turbulence, often behave in a regular well-organized
manner. The short-range weather forecaster, however,
is forced willy-nilly to predict the details of the large-
scale turbulent eddies—the cyclones and anticyclones—
which continually arrange themselves into new patterns.

1 The research reported in this work has been sponsored by the
Geophysics Research Directorate of the Air Force Cambridge
Research Center, under Contract No, AF 19(604)-4969.

Thus there are occasions when more than the statistics
of irregular flow are of very real concern.

In this study we shall work with systems of deter-
ministic equations which are idealizations of hydro-
dynamical systems. We shall be interested principally ia
nonperiodic solutions, i.e., solutions which never repeat
their past history exactly, and where all approximate
repetitions are of finite duration, Thus we shall be in-
volved with the ultimate behavior of the solutions, as
opposed to the transient behavior associated with
arbitrary initial conditions.

A closed hydrodynamical system of finite mass may

ostensibly be treated mathematically as a finite collec-*

tion of molecules—usually a very large finite collection
—in which case the governing laws are expressible asa
finite set of ordinary differential equations. These equa-
tions are generally highly intractable, and the set of
molecules is usually approximated by a continuous dis-
tribution of mass. The governing laws are then expressed
as a set of partial differential equations, containing such
quantities as velocity, density, and pressure as de-
pendent variables,

It is sometimes possible to obtain particular solutions
of these equations analytically, especially when the
solutions are periodic or invariant with time, and, in-
deed, much work has been devoted to obtaining such
solutions by one scheme or another. Ordinarily, how-
ever, nonperiodic solutions cannot readily be deter-
mined except by numerical procedures. Such procedures
involve replacing the continuous variables by a new
finite set of functions of time, which may perhaps be the
values of the continuous variables at-a chosen grid of
points, or the coefficients in the expansions of these
variables in series of orthogonal functions. The govern-
ing laws then become a finite set of ordinary differential
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equations again, although a far simpler set than the one
which governs individual molecular motions.

In any real hydrodynamical system, viscous dissipa-
tion is always occurring, unless the system is moving as
a solid, and thermal dissipation is always occurring,
unless the system is at constant temperature. For cer-
tain purposes many systems may be treated as conserva-
tive systems, in which the total energy, or some other
quantity, does not vary with time. In seeking the ulti-
mate behavior of a system, the use of conservative
equations is unsatisfactory, since the ultimate value of
any conservative quantity would then have to equal the
arbitrarily chosen initial value. This difficulty may be
obviated by including the dissipative processes, thereby
making the equations nonconservative, and also includ-
ing external mechanical or thermal forcing, thus pre-
venting the system from ultimately reaching a state of
rest. If the system is to be deterministic, the forcing
functions, if not constant with time, must themselves
vary according to some deterministic rule.

In this work, then, we shall deal specifically with
finite systems of deterministic ordinary differential
equations, designed to represent forced dissipative
hydrodynamical systems. We shall study the properties
of nonperiodic solutions of these equations.

It is not obvious that such solutions can exist at all.
Indeed, in dissipative systems governed by finite sets of
lingar equations, a constant forcing leads ultimately to
a constant response, while a periodic forcing leads to a
periodic response. Hence, nonperiodic flow has some-
times been regarded as the result of nonperiodic or
random forcing.

The reasoning leading to these concludions is not
applicable when the governing equations are nonlinear.
H the equations contain terms representing advection—
the transport of some property of a fluid by the motion
of the fluid itseli—a constant forcing can lead to a
variable response. In the rotating-basin experiments
already mentioned, both periodic and nonperiodic flow
result from thermal forcing which, within the limits of
experimental control, is constant. Exact periodic solu-
tions of simplified systems of equations, representing
dissipative flow with constant thermal forcing, have
been obtained analytically by the writer (1962a). The
writer (1962b) has also found nonperiodic solutions of
similar systems of equations by numerical means,

2. Phase space

Consider a system whose state may be described by M
variables X, -+ -, X . Let the system be governed by
the set of equations

dX/fdi=F{X,,---Xu), i=1,---, M, (1)

where time £ is the single independent variable, and the
functions F; possess continuous first partial derivatives.
Such a system may be studied by means of phase space—
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an M-dimensional Euclidean space I' whose coordinates
are Xy, - -+, X . Each peint in phase space represents a
possible instantaneous state of the system. A state
which is varying in accordance with (1) is represented
by a moving particle in phase space, traveling along a
trajectory in phase space, For completeness, the position
of a stationary particle, representing a steady state, is
included as a trajectory.

Phase space has been a useful concept in treating
finite systems, and has been used by such mathema-
ticians as Gibbs (1902} in his development of statistical
mechanics, Poincaré (1881) in his treatment of the solu-
tions of differential equations, and Birkhoff (1927) in
his treatise on dynamical systems.

From the theory of differential equations (e,g., Ford
1933, ch. 6), it follows, since the partial derivatives
aF,/3X, are continuous, that if £, is any time, and if
KXo, - -+ Xaro is any point in T, equations (1) possess a
unique solution

Xi=fiXro, - Xaro), i=1,--, M, (2)

valid throughout some time interval containing f, and
satisfying the condition

filXo, - Xogode) =Xw, =1, M. {3)

The functions f, are continuous in Xy, « -, Xxe and 7.
Hence there is 2 unique trajectory through each point of
[. Two or more trajectories may, however, approach the
same point or the same curve asymptotically as { — =
or as |— — . Moreover, since the functions f; are
continuous, the passage of time defines a continuous
deformation of any region of I' into another region.

In the familiar case of a conservative system, where
some positive definite quantity (}, which may represent
some form of energy, is invariant with time, each tra-
jectory is confined to one or another of the surfaces of
constant (. These surfaces may take the form of closed
concentric shells.

f, on the other hand, there is dissipation and forcing,
and if, whenever Q equals or exceeds some fixed value
(1, the dissipation acts to diminish Q mere rapidly then
the forcing can increase (), then (—d(Q)/dt} has a positive
lower bound where 0= (4, and each trajectory must
ultimately become trapped in the region where Q<O
Trajectories representing forced dissipative flow may
therefore differ considerably from those representing
conservative flow,

Forced dissipative systems of this sort are typified
by the system

dX,/dt= E tI{,‘kaXk-‘ Z b.-,—X,--{—c,-, (4)
ik i
where ¥ 24X XX, vanishes identically, 2 ;XX is
positive definite, and ¢, * + -, cur are constants. If
0-3% x4, )
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and if e;, - -+, ear are the roots of the equations

2 (bytbi)es=c, (6)

?

it follows from {4) that

4Q/di=73 biese;— 3 bij(Xi—e)(X;—e;).  (7)

The right side of {7) vanishes only on the surface of
an ellipsoid E, and is positive only in the interior of E.
The surfaces of constant ( are concentric spheres. If .§
denotes a particular one of these spheres whose interior
R contains the ellipsoid F, it i3 evident that each tra-
jectory eventually becomes trapped within R.

3. The instability of nonperiodic flow

In this section we shall establish one of the most
important properties of deterministic nonperiodic flow,
namely, its instability with respect to modifications of
small amplitude. We shall find it convenient to do this
by identifying the solutions of the governing equations
with trajectories in phase space. We shall use such
symbols as P(#) (variable argument} to denote trajec-
tories, and such symbols as P or P({#,) (no argument or
constant argument) to denote points, the latter symbol
denoting the specific point through which P(f) passes
at time /.

We shall deal with a phase space I in which a unique
trajectory passes through each point, and where the
passage of time defines a continuous deformation of any
region of I' into another region, so that if the points
Py(to), Palty), - -approach Py(l) as a limit, the points
Pi(to+7), Palte+), -+ -must approach Py(ty+r) as a
limit. We shall furthermore require that the trajectories
be uniformly bounded as £ — o ; that is, there must be
a bounded region R, such that every trajectory ulti-
mately remains with R. Our procedure is influenced by
the work of Birkhoff (1927) on dynamical systems, but
differs in that Birkhoff was concerned mainly with con-
servative systems. A rather detailed treatment of dy-
namical systems has been given by Nemytskii and
Stepanov (1960), and rigorous proofs of some of the
theorems which we shall present are to be found in
that source.

We shall first classify the trajectories in three different
manners, namely, according to the absence or presence
of transient properties, according to the stability or
instability of the trajectories with respect to small
modifications, and according to the presence or absence
of periodic behavior.

Since any trajectory P(#) is bounded, it must possess
at least one limit point Py, a point which it approaches
arbitrarily closely arbitrarily often, More precisely, Pois
a limit point of P(?) if for any >0 and any time {; there
exists a time f.(¢,f1)> ) such that | P(ts)—P,| <e. Here

absolute-value signs denote distance in phase spag,
Because T is continuously deformed as ¢ varies, eve
point on the trajectory through Po is also a limit pojy
of P(t), and the set of limit points of P(f) forms a ty,
Jectory, or a set of trajectories, called the Limiting iy,
Jectories of P(£). A limiting trajectory is obviously cop,
tained within R in its entirety.

If a trajectory is contained among its own limiti,
trajectories, it will be called central; otherwise it wil] be
called noncentral. A central trajectory passes arbitrarily
closely arbitrarily often to any point through which j;
has previously passed, and, in this sense at least, sep,.
rate sufficiently long segments of a central trajectory
are statistically similar. A noncentral trajectory remain
a certain distance away from any point through whig
it has previously passed. It must approach its entire g
of limit points asymptotically, although it need ng

approach any particular limiting trajectory asymptoti. |

cally. Its instantaneous distance from its closest limijt
point is therefore a transient quantity, which becomes
arbitrarily small as £ — .

A trajectory P() will be called stable at a point P(1)
if any other trajectory passing sufficiently close to P(y)
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at time £ remains close to P(f) as t— = ; ie, PO

stable at P(t,) if for any ¢>0 there exists a 8(ef,)>0
such that if |Pilt:)—P(h)|<é and f2>14, |Pyfh)
— P(ty)| <e. Otherwise P{f) will be called unstable at
P(t;). Because T is continuously deformed as ¢ varies,
a trajectory which is stable at one point is stable at every
point, and will be called a stable trajectory. A trajectory
unstable at one point is unstable at every point, and
will be called an unstable trajectory. In the special case

that P(f) is confined to one point, this definition of !

stability coincides with the familiar concept of stability
of steady flow.

A stable trajectory P(£) will be called uniformly stable
if the distance within which a neighboring trajectory
must approach a point P(¢1), in order to be certain of
remaining close to P(f) as t— o, itself possesses a
positive lower bound as {; — = le., P(!) is uniformly
stable if for any >0 there exists a §(¢)>>0 and a time
to(e) such that i 4>t and | Pi{n)—P(t)]| <5 and
ta> b, | Pi(ta}— P{t2}| <e. A limiting trajectory Pyft) of
a uniformly stable trajectory P{f) must be uniformly
stable itself, since all trajectories passing sufficiently
close to Po(f) must pass arbitrarily close to some point
of P(1} and so must remain close to P(¢), and hence te
Po(t), as t — o,

Since each point lies on a unique trajectory, any
trajectory passing through a point through which it has
previously passed must continue to repeat its past be-
havior, and so must be periodic. A trajectory P(t) will
be called guasi-periodic if for some arbitrarily large
time interval =, P(t-+7) ultimately remains arbitrarily
close to P(), i.e., P(1} is quasi-periodic if for any >0
and for any time interval ro, there exists a (e, 7p) >0
and a time 4H(e, 7o) such that if &> 4, | P(tat1)— P{)|

-
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<e Periodic trajectories are special cases of quasi-
periodic trajectories.

A trajectory which is not quasi-periodic wilt be called
nonperiodic. 1 P{1) is nonperiodic, P(4+7) may be
arbitrarily close to P{4) for some time # and some
arbitrarily large time interval 7, but, if this is so, P(:-+ )
cannot remain arbitrarily close to P{¢} as {—s . Non-
periodic trajectories are of course representations of
deterministic nonpetiodic flow, and form the principal
subject of this paper.

Periodic trajectories are obviously central. Quasi-
periodic central trajectories include multiple periodic
trajectories with incommensurable periods, while quasi-
periodic noncentral trajectories include those which
approach periodic trajectories asymptotically, Non-
periodic trajectories may be central or noncentral.

We can now establish the theorem that a trajectory
with a stable limiting trajectory is quasi-periodic. For
if Po(f) is a limiting trajectory of P(f), two distinct
points P(ty) and P(tr+r), with 7 arbitrarily large, may
be found arbitrary close to any point Py(fs). Since Polt)
is stable, P(2) and P(t+r) must remain arbitrarily
close to Py(i+£f,—1), and hence to each other, as f— o,
and P(t) is quasi-periodic.

It follows immediately that a stable central trajectory
is quasi-periodic, or, equivalently, that a nonperiodic
central trajectory is unstable.

The result has far-reaching consequences when the
system being considered is an observable nonpertodic
system whose future state we may desire to predict, It
implies that two states differing by imperceptible
amounts may eventually evolve into two considerably
different states. If, then, there is any error whatever in
observing the present state—and in any real system
such errors seem inevitable—an acceptable prediction
of an instantaneous state in the distant future may
well be impossible,

As for noncentral trajectories, it follows that a uni-
formly stable noncentral trajectory is quasi-periodic, or,
equivalently, a nonperiodic noncentral trajectory is not
uniformly stable. The possibility of a nonperiodic non-
Central trajectory which is stable but not uniformly
stable still exists, To the writer, at least; such trajec-
tories, although possible on paper, do not seem charac-
teristic of real hydrodynamical phenomena. Any claim
that atmospheric flow, for example, is represented by a
trajectory of this sort would lead to the improbable
tonclusion that we ought to master long-range fore-
‘asting as soon as possible, because, the longer we wait,
the more difficult our task will become.

In summary, we have shown that, subject to the
tonditions of uniqueness, continuity, and boundedness
Prescribed at the beginning of this section, a central
trajectory, which in a certain sense is free of transient
Properties, is unstable if it is nonperiodic. A noncentral
trajectory, which is characterized by transient prop-
erties, is not uniformly stable if it is nonperiodic, and,

——
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if it is stable at all, its very stability is one of its tran-
sient properties, which tends to die out as time pro-
gresses. In view of the impossibility of measuring initial
conditions precisely, and thereby distinguishing between
a central trajectory and a nearby noncentral trajectory,
all nonperiodic trajectories are effectively unstable from
the point of view of practical prediction.

4. Numerical integration of nonconservative sys-
tems

The theorems of the last section can be of importance
only if nenperiodic solutions of equations of the type

“considered actually exist. Since statistically stationary

nonperiodic functions of time are not easily described
analytically, particular nonperiodic solutions can prob-
ably be found most readily by numerical procedures. In
this section we shall examine a numerical-integration
procedure which is especially applicable to systems of
equations of the form (4). In a later section we shall use
this procedure to determine a nonperiodic solution of a
simple set of equations.

To solve (1) numerically we may choose an initial
time {p and a time increment At, and let

X,',n= X,{lg"i-nﬂt). (8)
We then introduce the auxiliary approximations
i =X a+Fo(P,)AL {9

Xt = Xitngny+ Fil P agn)) AL, (10)
where Pn and P (.41 are the points whose coordinates are
Xy Xan) and  (Ximin, X arensn)s

The simplest numerical procedure for obtaining
approximate solutions of (1) is the forward-difference
procedure,

(1)

In many instances better approximations to the solu-
tions of (1) may be obtained by a centered-difference
procedure

AXll'.n-{-l= Xx'(n+1)-

Xi.n+1=Xi.n—1+2Fi(Pn)At- (12)

This procedure is unsuitable, however, when the deter-
ministic nature of (1) is a matter of concern, since the
values of Xy .., - -+, X3r . do not uniquely determine the
values of Xy a1, -, Xorapr

A procedure which largely overcomes the disadvant-
ages of both the forward-difference and centered-differ-
ence procedures is the double-approximation procedure,
defined by the relation

Xi,n+1=X“,u+%[F-‘(Pn)+Fi(P(n+l})]A[-

Here the coefficient of At is an approximation to the time
derivative of X; at time tet+(n+3)AL From (9) and
(10), it follows that (13) may be rewritten

Xi.n—;-l: %(Xi.n‘l‘Xi((rH.zn)-

(13)

(14)
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A convenient scheme for automatic computation is the
successive evaluation of Ximyn, Xigniny, and Xiap
according to (9), (10) and (14). We have used this
procedure in all the computations described in this
study.

In phase space a numerical solution of (1) must be
represented by a jumping particle rather than a con-
tinuously moving particle. Moreover, if a digital com-
puter is instructed to represent each number in its
memory by a preassigned fixed number of bits, only
certain discrete points in phase space will ever be oc-
cupied. If the numerical solution is bounded, repetitions
must eventually occur, so that, strictly speaking, every
numerical solution is periodic. In practice this considera-
tion may be disregarded, if the number of different
possible states is far greater than the number of itera-
tions ever likely to be performed. The necessity for
repetition could be avoided altogether by the somewhat
uneconomical procedure of letting the precision of
computation increase as » increases,

Consider now numerical solutions of equations (4),
obtained by the forward-difference procedure (11). For
such solutions,

Qoi1= Qnt (dQ/dt) a3 32 FA(PAE. (15)

Let S* be any surface of constant  whose interior R’
contains the ellipsoid E where dQ/dt vanishes, and let
S be any surface of constant Q whose interior R con-
tains 5.

Since 3° F.* and dQ/dt both possess upper bounds in
R, we may choose Af so small that P,y lies in R if
P, lies in R'. Likewise, since )_ F.? possesses an upper
bound and d(/d! possesses a negative upper bound in
R—FR’, we may choose Af so small that Q.1 <Q. if P,
lies in R— R’. Hence Af may be chosen so small that any
jumping particle which has entered R remains trapped
within R, and the numerical solution does not blow up.
A blow-up may still occur, however, if initially the
particle is exterior to R.

Consider now the double-approximation procedure
(14). The previous arguments imply not only that
Papyy lies within R if P, lies within R, but also that
Pnizyy lies within R if P a4y lies within R. Since the
region R is convex, it follows that P.y,, as given by (14),
lies within R if P, lies within R. Hence if At is chosen so
small that the forward-difference procedure does not
blow up, the double-approximation procedure also does
not blow up.

We, note in passing that if we apply the forward-
difference procedure to a conservative system where
dQ/dt=0 everywhere,

Qn+1=Qn+%Z_ F?(Pn)Aﬂ (16)

In this case, for any fixed choice of Af the numerical
solution ultimately goes to infinity, unless it is asymp-
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totically approaching a steady state. A similar resy)
holds when the double-approximation procedure (14) ;,
applied to a conservative system.

5. The convection equations of Saltzinan

In this section we shall introduce a system of thre,
ordinary differential equations whose solutions affor
the simplest example of deterministic nonperiodic floy
of which the writer is aware. The system is a simplificg,
tion of one derived by Saltzman (1962) to study finite
amplitude convection. Although our present interest
in the nonperiodic nature of its solutions, rather thay
in its contributions to the convection problem, we sha])
describe its physical background briefly.

Rayleigh (1916) studied the flow occurring in a laye
of fluid of uniform depth H, when the temperatur
difference between the upper and lower surfaces f
maintained at a constant value AT. Such a systen
possesses a steady-state solution in which there is ng
motion, and the temperature varies linearly with depth,
if this solution is unstable, convection should develop,

In the case where all motions are parallel to the
x—z-plane, and no variations in the direction of the
y-axis occur, the governing equations may be written
(see Saltzman, 1962)

a Ay, Vi) ag
— V= ———————t e VYt ga—, ar,
ot 3(x,z) dx
3 .0 AT &Y
= —— V. (18
ai d(x,5) H ox

Here o is a stream function for the two-dimensional
motion, # is the departure of temperature from thal
occurring in the state of no convection, and the con
stants g, e, », and x denote, respectively, the acceleration
of gravity, the coefficient of thermal expansion, the
kinematic viscosity, and the thermal conductivity. The
problem is most tractable when both the upper and
lower boundaries are taken to be free, in which cast
¥ and V% vanish at both boundaries.
Rayleigh found that fields of motion of the form

¥=v sin (reH %) sin (wH'z), (19)
8=4, cos (e 'x) sin (xH ), (20

would develop if the quantity
R,=gaH}ATv Y, (21,

now called the Rayleigh number, exceeded a critical valut
R.=n%(1+a?% (22

The minimum valee of R, namely 27x%/4, occun
when a?=4%.

Saltzman (1962) derived a set of ordinary differentia
equations by expanding ¢ and § in double Fourier serie
in x and 3z, with functions of ¢ alone for coefficients, ant



wiing these series into (17_) and (18}. He arranged
B t-hand sides of the resui'tmg equations in double-
B ceries form, by replacing products of trigono-
fu,nctioﬂs of x (or z) by sums of trigonometric
i ns, and then equated coefficients of similar fune-
gf » and z. He then reduced the resulting infinite
&, to a finite system by omitting reference to all
?ispeciﬁed finite set of functions of £, in the manner
Josed by the writer (1960).
fz then obtained time-dependent solutions by nu-
ical integration. In certain cases all except three of
‘dependent variables eventually tended to zero, and
 three variables underwent irregular, apparently
periodic fluctuations.
hese same solutions would have been obtained if the
« had at the start been truncated to include a total
hree terms. Accordingly, in this study we shall let

ety W= XV2 sin (raH %) sin (v H'2), (23)
AR, AT 9= ¥V2 cos (raH 1%} sin (wH2)
- —Zgin 2xH ), (24)

re X, ¥, and Z are functions of time alone. When
«essions (23) and (24) are substituted into (17) and
,and trigonometric terms other than those occurring
24) and {24) are omitted, we obtain the equations

X'= —gX+a¥, (23)
V'=—XZ+rX—¥, (26)
Z= XY —bZ. (27)

e a dot denotes a derivative with respect to the
ensionless time 7=w2H2(14+ ¢, while o=x" is
Prand! number, r=R R, and b=4(1+a%"
ept for multiplicative constants, our variables X, ¥,
Z are the same as Saltzman’s variables 4, I, and
iquations (25), (26), and (27) are the convection
itions whose solutions we shall study.
1 these equations X is proportional to the intensity
1e convective motion, while ¥ is proportional to the
perature difference between the ascending and de-
ding currents, similar signs of X and ¥ denoting
-warm fluid is rising and cold fluid is descending.
variable Z is proportional to the distortion of the
lcal temperature profile from linearity, a positive
¢ indicating that the strongest gradients occur mear
boundaries.
Quations {25)-{27) may give realistic results when
f_{ayleigh number is slightly supercritical, but their
tions cannot be expected to resemble those of (17)
(18) when strong convection occurs, in view of the
eme truncation.

\pplications of linear theory

Ythough equations (25)-(27), as they stand, do not
¢ the form of {4), a number of linear transformations
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will convert them to this form. One of the simplest of
these is the transformation

X'=X, Y'=V, Z'=Z—r—0. (28)
Solutions of (25)-(27) therefore remain bounded within
a region R as 7 — oo, and the general results of Sections
2, 3 and 4 apply to these equations. :

The stability of a solution X(r}, ¥{(r), Z(r) may be
formally investigated by considering the behavior of
small superposed perturbations xy(r), ¥o(v), 50(7). Such
perturbations are temporarily governed by the linear-
ized equations

Zo | e a 0 £
[%]=[&—Z) -1 —X][w} (29)
Z0 Y X —— b Zod-

Since the coefficients in (29) vary with time, unless
the basic state X, ¥, Z is a steady-state solution of
{25)-(27), a general solution of (29) is not feasible.
However, the variation of the volume ¥y of a small
region in phase space, as each point in the region is
displaced in accordance with (23)-(27), is determined
by the diagonal sum of the matrix of coefficients;
specifically

Vg. = (0’+ b+ 1) Vo. (30)
This is perhaps most readily seen by visualizing the
motion in phase space as the flow of a fluid, whose
divergence is

ax- av- oz
= — (g b+ 1).

—t— (31)
X Y Iz

Hence each small volume shrinks to zero as r — o=, at
a rate independent of X, ¥, and Z. This does not imply
that each small volume shrinks to a point; it may simply
become flattened into a surface. It follows that the
volume of the region initially enclosed by the surface §
shrinks to zero at this same rate, so that all trajectories
ultimately become confined to a specific subspace
having zero volume. This subspace contains all those
trajectories which lie entirely within R, and so contains
all central trajectories.

Equations (25)-(27) possess the steady-state solution
X =¥=2Z=0, representing the state of no convection.
With this basic solution, the characteristic equation of
the matrix in (29) is

[A+bI[A+ (o-+ DA F-a(t—7)]=0.

This equation has three real roots when 7>0; all are
negative when r< 1, but one is positive when > 1. The
criterion for the onset of convection is therefore r=1,
or R,=R,, in agreement with Rayleigh’s result.

When r>> 1, equations (25)-(27) possess two additional

steady-state solutions X=¥V== \/b(r—l), Z=r—1.

(32)
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For either of these solutions, the characteristic equation
of the matrix in {29) is

A (o b4 DA (r-Fo)br+20b{r— 1) = 0.

This equation possesses one real negative root and two
complex conjugate roots when r>1; the complex con-
jugate roots are pure imaginary if the product of the
coefficients of A2 and » equals the constant term, or

r=clo4b+3)(e—d—1)"1 (34)

This is the critical value of r for the instability of steady
convection. Thus if o<b+1, no positive value of 7
satisfies (34), and steady convection is always stable,
but if ¢>5+1, steady convection is unstable for suffi-
ciently high Rayleigh numbers. This result of course
applies only to idealized convection governed by (25)-
(27), and not to the solutions of the partial differential
equations (17) and (18).

The presence of complex roots of (34) shows that if
unstable steady convection is disturbed, the motion will
oscillate in intensity. What happens when the disturb-
ances become large is not revealed by linear theory. To
investigate finite-amplitude convection, and to study
the subspace to which trajectories are ultimately con-
fined, we turn to numerical integration.

(33)

Taste 1. Numerical solution of the convection equations.
Values of X, ¥, Z are given at every fifth iteration N, for the
first 160 iterations.

N X Y Z
0000 0600 0010 Q000
0005 0004 0012 0000
0010 0009 0020 0000
0015 0016 0036 0002
0020 0030 0066 0007
0025 0054 0115 0024
0030 Q083 0192 0074
0035 0150 0268 0201
0040 0195 0234 0397
0045 0174 0055 0483
0050 0097 —0067 0415
0055 0025 -—0093 0340
0060 —0020 —0039 0298
0065 —0046 —0034 0275
0070 —0061 —0033 0262
0075 —0070 —0086 0256
0080 —0077 —0091 0255
0085 — 0084 —0095 0258
0090 —0089 —0098 0266
0095 —0093 —00%8 0275
0100 —0094 —0093 0283
0105 —0092 —0086 0297
0110 ~(083 —0079 0286
0115 —0083 —0073 0231
0120 —0078 —0070 0273
0125 —-0075 —0071 0264
0130 —0074 —0075 0257
0135 —0076 —0080 0252
0140 —0079 -— 0087 0251
0145 —0083 —0093 0254
0150 —0088 —{098 0262

—0092 —0099 0271

—0094 0281
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7. Numerical integration of the convection equ
tions

To obtain numerical solutions of the convection equ
tions, we must choose numerical values for the ¢q
stants. Following Saltzman (1962), we shall let o=
and a?=1, so that 5=8/3. The critical Rayleigh numb
for instability of steady convection then occurs wh
r=470/19=24.74.

We shall choose the slightly supercritical value r=3
The states of steady convection are then represented |
the points (6v2, 6v2, 27) and (—6vZ, —6v2Z, 27) in phe
space, while the state of no convection corresponds
the origin (0,0,0).

We have used the double-approxzimation procedy
for numerical integration, defined by (9), (10), and (1
The value A7=0.01 has been chosen for the dimensic
less time increment. The computations have be
performed on a Royal McBee LGP-30 electronic ca

TasLE 2. Numerical solution of the comvection equati
Values of X, ¥, Z are given at every iteration & for whidl
possesses a relative maximum, for the first 6000 iterations.

N X ¥ 4 N X ¥
0045 0174 0055 0483 3029 0117 0075 0
0107 —009t —0083 0287 3098 0123 0076 0
0168 —0092 —0084 0288 3171 0134 0082 0
0230 —0092 —0084 0289 3268 0155 0069 0
0292 —0092 0083 0290 3333 --0114 —0079 ¢
0354 —0093 —0083 0292 3400 —0117 —0077 O
0416 —0093 —0083 0293 3468 —0125 0083 0
0478 —0094 —0082 0295 3541 —0129 —0073 0
0540 —0094 —0082 0296 3625 —0146 —0074 O
0602 —0095 —0082 0298 3695 0127 0079 9
0664 ~—0096 —0083 0300 3172 0136 0072 €
0726 —0097 —0083 0302 3853 —0i44 —0077 ¢
0789 —0097 —0081 0304 3926 0129 0072 C
0851 —0099 —0083 0307 4014 0148 0063 (
0914 —0100 —0081 0309 4082 —0120 —0074 (
0977 —0100 —0080 0312 4153 —0129 —0078 (
1040 —0102 —0080 0315 4233 —0144 0082 (
1103 0104 —0081 0319 4307 0135 0081 (
1167 —0105 —0079 0323 4417 —0162 —006% (
1231 —0107 —0079 0328 4480 0106 0081 (
1295 —0111 —0082 0333 4544 0109 0082
1361 —0111 —0077 0339 4609 0110 0080 ¢
1427 —0116 —0079 0347 4675 0112 0076 (
1495 —0120 —0077 0357 4741 0118 008t (
1566 —0125 —0072 0371 4810 0120 0074 (
1643 0139 —0077 0396 4881 0130 0081 (
1722 0140 0075 0401 4963 0141 0068 ¢
1798 0135 —0072 0391 5035 ~0133 —0081 |
1882 0146 0074 0413 5124 —0151 —0076 {
1952 —0127 —0078 0370 5192 0119 0075 {
2029 —0135 —0070 0393 5262 0129 0083
2110 0146 0083 0408 5340 0140 0079 ¢
2183 —0128 —0070 0379 5419 —0137 —0067 !
2268 —0144 —0066 0415 5495 0140 008t !
2337 0126 0079 0363 5876 —0141 --0072 !
2412 0137 0081 0389 5649 0135 0082 !
2501 —0153 —0080 0423 5752 0160 0074
2569 0119 0076 0357 5816 —0110 —0081
2639 0129 0082 0371 5881 —0113 0082
2717 0136 0070 0395 5048 —0114 —0075
2796 —0143 0079 0402
2871 0134 0076 0388
2062 0152 —0072 426
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hine. Approxima,tely one second per itera-
-, aside from output time, is required.
lGF;r :nitial conditions we have chosen a slight de-
ariure irom the state of no convection, na,mely_((),l,O}.
4ble 1 has been prepared b}'f the computer. It gives the
Jlues of N (the number of 1terat1ons)_, X, }’, and Z at
very ifth iteration for the first 160 iterations. In the
gnted output (but not in the computations) the values
(x, ¥, and Z are multiplied })y ten, and thex_l only
hose figures to the left of the decimal point are printed.
“qus the states of steady convection would appear as
054, 0084, 0270 and —0084, —0084, 0270, while the
tate of 0o convection would appear as 0000, 0000, 0000.

The initial instability of the state of rest is evident. All
hree variables grow rapidly, as the sinking cold fluid
s replaced by even colder fluid from above, and the
ising warm fluid by warmer fluid from beiow, so that by
tep 33 the strength of the convection far exceeds that
i steady convection. Then ¥ diminishes as the warm
1uid i carried over the top of the convective cells, so
hat by step 50, when X and ¥ have opposite signs,
varm fluid is descending and cold fluid is ascending. The
notion thercupon ceases and reverses its direction, as
ndicated by the negative values of X following step 60.
3y step 83 the system has reached a state not far from
hat of steady convection. Between steps 85 and 150 it
wecutes a complete oscillation in its intemsity, the
dight amplification being almost indetectable.

The subsequent behavior of the system is illustrated
n Fig. 1, which shows the behavior of ¥ for the first
3000 iterations. After reaching its early peak near step
35 and then approaching equilibrium near step 85, it
undergoes systematic amplified oscillations until near
slep 1650. At this point a critical state is reached, and
thereafter ¥ changes sign at seemingly irregular inter-
V_als, reaching sometimes one, sometimes two, and some-
limes three or more extremes of one sign before changing
ign again,

Fig. 2 shows the projections on the X-¥- and Y-Z-
planes in phase space of the portion of the trajectory
wrresponding to iterations 1400-1900. The states of
steady convection are denoted by C and C’. The first
portion of the trajectory spirals outward from the
vicinity of ¢, as the oscillations about the state of
steady convection, which have been occurring since step

» continue to grow. Eventually, near step 1050, it
frosses the X -Z-plane, and is then deflected toward the
Teighborhood of €, Tt temporarily spirals about C, but
T;OSSES. the X-Z-plane after one circuit, and returns to
ovig nelg}_lborbood of €', where it soon joins the spiral
o r which it has previously traveled. Thereafter it

0Sses from one spiral to the other at irregular intervals.
. Fig. 3, in which the coordinates are ¥ and Z, is based
ni?n .t.he printed values of X, ¥, and Z at every fiith
minaUOn for the first 6000 iterations. These values deter-
o ,e X as a smooth single-valued function of ¥ and Z

& much of the range of ¥V and Z; they determine X

pting MAac

J
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Fio. 1. Numerical solution of the convection equations. Graph

of ¥ as a function of time for the first 1000 iterations (upper
curve), second 1000 iterations (middle curve), and third 1000
iterations {Jower curve).
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Fre. 2. Numerical solution of the convection equations.
Proiections on the X-¥-plane and the Y-Z-plane in phase space
of the segment of the trajectory extending from iteration 1400 to
iteration 1000. Numerals “14,” “15" etc., denote positions at
iterations 1400, 1500, etc. States of steady convection are denoted

by C and C'.
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Fi1c. 3. Isopleths of X as a function of ¥ and Z (thin solid curves), and isopleths of the lower of two
values of X, where two values occur (dashed curves), for approximate surfaces formed by all points on
limiting trajectories. Heavy solid curve, and extensions as dotted curves, indicate natural boundaries of

surfaces.

as one of two smooth single-valued functions over the
remainder of the range. In Fig. 3 the thin solid lines are
isopleths of X, and where two values of X exist, the
dashed lines are isopleths of the lower value. Thus,
within the limits of accuracy of the printed values, the
trajectory is confined to a pair of surfaces which appear
to merge in the lower portion of Fig. 3. The spiral about
C lies in the upper surface, while the spiral about C” lies
in the lower surface. Thus it is possible for the trajectory
to pass back and forth from one spiral to the other
without intersecting itself.

Additional numerical solutions indicate that other
trajectories, originating at points well removed from
these surfaces, soon meet these surfaces. The surfaces
therefore appear to be composed of all points lying on
limiting trajectories.

Because the origin represents a steady state, no tra-
jectory can pass through it. However, two trajectories
emanate from it, i.e., approach it asymptotically as
s —» — oo The heavy solid curve in Fig. 3, and its ex-
tensions as dotted curves, are formed by these two tra-
jectories. Trajectories passing close to the origin will
tend to follow the heavy curve, but will not cross it, so
that the heavy curve forms a natural boundary to the
region which a trajectory can ultimately occupy. The

holes near C and C’ also represent regions which cannot
be occupied after they have once heen abandoned,

Returning to Fig. 2, we find that the trajectory af
parently leaves one spiral only after exceeding some
critical distance from the center. Moreover, the exienl
to which this distance is exceeded appears to determine
the point at which the next spiral is entered; this in tum
scems to determine the number of circuits to be executed
before changing spirals again.

Tt therefore seems that some single feature of a giver
circuit should predict the same feature of the followitg
circuit. A suitable feature of this sort is the maximu®
value of Z, which occurs when a cirenit is nearly com
pleted. Table 2 has again been prepared by the com
puter, and shows the values of X, ¥, and Z at only thost
iterations N for which Z has a relative maximum.
succession of circuits about C and C' is indicated by the
succession of positive and negative values of X and ©
Evidently X and ¥ change signs following a maximi®
which exceeds some critical value printed as about 3_83'

Fig. 4 has been prepared from Table 2. The abscis
is M, the value of the nth maximum of Z, while t
ordinate is My, the value of the following maximu™
Each point represents a pair of successive values o
taken from Table 2, Within the limits of the round-?




~ there is & precise two-to-one relation
) M. The initial maximum 3f,=483
if it had followed a maximum My=385,
near 385 are foliowed by close approaches
< . nd then by exceptionally large maxima.
: ;;hat an investigator, unaware of the n;}t-ure
ning equations, could formulate an empirical
cheme from the “data” pictured in Figs. 2
in the value of the most recent maximum of
future maxima may be obtained by repeated
< of Fig. 4. Values of X, ¥, and Z between
7 may be found from Fig. 2, by interpolating
peighboring curves. Of course, the accuracy of
ns made by this method is limited by the
2. of Figs. 2 and 4, and, as we shall see, by the
'y with which the initial values of X, ¥, and Z
Gserved.

2. of the implications of Fig. 4 are revealed by
Jering an idealized two-to-one correspondence be-
' successive members of sequences My, M, ---,
Eié{ing of numbers between zero and one. These
uences satisfy the relations

M= 2M., i M.<}
M.y, is undefined i M.=% (35)
Ma=2-2M, i Ma>1.

¢ correspondence defined by (35) is shown in Fig. 5,
ich is an idealization of Fig. 4. It follows from re-
ted applications of (35} that in any particular
ueace,

M= mat-2"Mo, (36)

re m, is an even integer.

‘onsider first a sequence where My=1/2?, where # is
» In this case M,_,==}, and the sequence terminates.
se sequences form a denumerable set, and corre-
od to the trajectories which score direct hits upon the
¢ of no convection.

lext consider a sequence where Mo=1/2P, where #
v are relatively prime odd numbers. Then if £>0,
+1+e=1:/v, where u; and v are relatively prime and
stven. Since for any v the number of proper fractions
P finite, repetitions must occur, and the sequence
eriodic, These sequences also form a denumerable
‘and correspond to periodic trajectories.

he periodic sequences having a given number of
et values, or phases, are readily tabulated. In
dcular there are a single one-phase, a single two-
s and two three-phase sequences, namely,

2/3, -,
2/3,4/5, ---,
2/7,4/7,6/7, -,
2/9, 4/9,8/9, ---.
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The two three-phase sequences differ qualitatively in
that the former possesses two numbers, and the latter
only one number, exceeding 4. Thus the trajectory corre-
sponding to the former makes two circuits about C,
followed by one about €’ (or vice versa). The trajectory
corresponding to the latter makes three circuits about C,
followed by three about (’, so that actually only Z
varies in three phases, while X and ¥ vary in six.
Now consider a sequence where My is not a rational
fraction. In this case (36) shows that M s cannot equal

Mng

<

L - " + M
X k=] 00 450 n

Fic. 4. Corresponding values of relative maximum of Z
(abscissa) and subsequent relative maximum of Z (ordinate)
oceurring during the first 6000 iterations.

1 L 1

¢] 05 1

Fic. 5. The function M, =2M, if M,.<}, M., =2-2M, i
M,> 1, serving as an idealization of the locus of pointsin Vig. 4.
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M., if £>0, so that no repetitions occur. These se-
quences, which form a nondenumerable set, may con-
ceivably approach periodic sequences asymptatically
and be quasi-periodic, or they may be nonperiodic.

Finaily, consider two sequences Mo, M, --- and
My, My, -+, where My = Mq+-e. Then for a given E,
if € is sufficiently small, My'=M 2%, All sequences
are therefore unstable with respect to small modifica-
tions. In particular, all periodic sequences are unstable,
and no other sequences can approach them asymptoti-
cally. All sequences except a set of measure zerc are
therefore nonperiodic, and correspond to nonperiodie
trajectories.

Returning to Fig. 4, we see that periodic sequences
analogous to those tabulated above can be found. They
are given approximately by

398, -,

377, 410, «--,
369, 391, 414, - - -,
362, 380, 419, - -+,

The trajectories possessing these or other periodic se-
quences of maxima are presumably perioedic or quasi-
periodic themselves.

The above sequences are temporarily approached in
the numerical solution by sequences beginning at itera-
tions 5340, 4881, 3625, and 3926. Since the numerical
solution eventually departs from each of these se-
quences, each is presumably unstable.

More generally, if M,'= M.+¢, and if e is sufficiently
small, M a2’ =M .2+ Ae, where A is the product of the
slopes of the curve in Fig. 4 at the points whose abscissas
are Mn, -+ Majs1. Since the curve apparently has a
slope whose magnitude exceeds unity everywhere, all
sequences of maxima, and hence all trajectories, are
unstable. In particular, the periodic trajectories, whose
sequences of maxima form a denumerable set, are un-
stable, and only exceptionai trajectories, having the
same sequences of maxima, can approach them asymp-
totically, The remaining trajectories, whose sequences
of maxima form a nondenumerable set, therefore repre-
sent deterministic nonperiodic flow.

These conclusions have been based upon a finite seg-
ment of a numerically determined solution. They cannot
be regarded as mathematically proven, even though the
evidence for them is strong. One apparent contradiction
requires further examination.

Tt is difficult to reconcile the merging of two surfaces,
one containing each spiral, with the inability of two
trajectories to merge. It is not difficult, however, to
explain the apparent merging of the surfaces. At two
times 7o and 1y, the volumes occupied by a specified set
of particles satisfy the relation

Volrs) = e—Gatbt Din=m Vy(rg), (37

according to (30). A typical circuit about C or " re-
guires about 70 iterations, so that, for such a circuit,

re=1,40.7, and, since o+ 1=41/3,
Irro(rl)t(].00007 V[)(Tn}. (33}

Two particles separated from each other in a suitgy,
direction can therefore come together very rapidly, 4y
appear to merge.

It would seem, then, that the two surfaces Terel;
appear to merge, and remain distinct surfaces. Foligwj,
these surfaces along a path parallel to a trajectory, apg
cireling C or ¢, we see that each surface is reaily a py,
of surfaces, so that, where they appear to merge, ther,
are really four surfaces. Continuing this process fo
another circuit, we see that there are really eight sy,
faces, etc., and we finally conclude that there is g
infinite complex of surfaces, each extremely close to op,
or the other of two merging surfaces.

The infinite set of values at which a line parallel to th
X -axis intersects these surfaces may be likened to the
set of all numbers between zero and one whose decima)
expansions (or some other expansions besides binary)
contain only zeros and ones. This set is plainly non
denumerable, in view of its correspondence to the set of
all numbers between zero and one, expressed in binary,
Nevertheless it forms a set of measure zero. The s-
quence of ones and zeros corresponding to a particuls
surface contains a history of the trajectories lying in that
surface, a one or zero immediately to the right of the
decimal point indicating that the last circuit was about
C or C', respectively, a one or zero in second place.
giving the same information about the next to the last,
circuit, etc. Repeating decimal expansions represen,
periodic or quasi-periodic trajectories, and, since they
define rational fractions, they form a denumerable set;

If one first visualizes this infinite complex of surfacey’
it should not be difficult to picture nonperiodic deter
ministic trajectories embedded in these surfaces.

i

8. Conclusion

Certain mechanically or thermally forced nonc
servative hydrodynamical systems may exhibit .mth
periodic or irregular behavior when there is no obviou
related periodicity or irregularity in the forcing proce
Both periodic and nonperiodic flow are observed in 0
experimental models when the forcing process 13
constant, within the lmits of experimental cont]
Some finite systems of ordinary differential equa
designed to represent these hydrodynamical s¥¥
possess periodic analytic solutions when the forcingg
strictly constant, Other such systems have yielded 138
periodic numerical solutions. )

A finite system of ordinary differential ¢
representing forced dissipative flow often has the
erty that alt of its solutions are u]timatf':lY co
within the same bounds., We have studied 1 detﬂ:
properties of solutions of systems of this sort:
principal results concern the instability of nonp®
solutions, A nonpetiodic solution with no transien

quatl




B ¢ be unstable, in the sense that solutions
y appmximating it do not_contmue to do s0.
odic solution with a transient component is
%o stable, but in this case its staf?lhty is one of
fent properties, which tends to dl_e out.
fify the existence of determlnl'snc nenperiodic
have obtained numerical solutions of a system
. ordinary differential equations designed to
t & convective process. These equations possess
teady-state solutions and a denumerably infinite
 riodic solutions. All solutions, and in particular
periodic splutions, are found to be unstable. The
ing solutions therefore cannot in general ap-
the periadic solutions asymptotically, and so are

,n_periodic. . . .
When cur results concerning the instability of non-
?rfddic.ﬂow are applied to the atmosphere, which is
fensibly nonperiodic, they indicate that prediction of
¢ sufficiently distant future is impossible by any
sthod, unless the present conditions are known ex-
tly. In view of the inevitable inaccuracy and incom-
Aeness of weather observations, precise very-long-
ige forecasting would seem to be non-existent.
There remains the question as to whether our results
dly apply to the atmosphere. One does not usually
ard the atmosphere as either deterministic or finite,
1 the lack of periodicity is not a mathemaltical cer-
nty, since the atmosphere has not been observed
EVET.
Ihe foundation of our principal resuit is the eventual
estity for any bounded system of finite dimension-
¥ to come arbitrarily close to acquiring a state which
s previously assumed. If the system is stable, its
ure development will then remain arbitrarily close
its past history, and it will be quasi-periedic.

n the case of the atmosphere, the crucial point is
1 whether analogues must have occurred since the
t of the atmosphere was first observed. By ana-
ues, we mean specifically two or more states of the
1osphere, together with its environment, which re-
1b]e.e&fh other so closely that the differences may
sscribed to errors in observation. Thus, to be analo-
5, tW9 states must be closely alike in regions where
tvations are accurate and plentiful, while they need
beat all alike in regions where there are no observa-
% atall, whether these be regions of the atmosphere
¢ environment. If, however, some unobserved fea-
S are implicit in a succession of observed states,
Scessions of states must be nearly alike in order
€ analogues.

1t i3 trug that two analogues have occurred since
“spheric observation first began, it follows, since the
“phere has not been observed to be periodic, that
fuccessions of states following these analogues must
tually have differed, and no forecasting scheme
d have given cotrect results both times. If, instead,
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analogues have not occurred during this period, some
accurate very-long-range prediction scheme, using ob-
servations at present available, may exist. But, if it
does exist, the atmosphere will acquire a quasi-periodic
behavior, never to be lost, once an analogue occurs, This
quasi-periodic behavior need not be established, though,
even if very-long-range forecasting is feasible, if the
variety of possible atmospheric states is so immense
that analogues need never occur. It should be noted
that these conclusions do not depend upon whether or
not the atmosphere is deterministic.

There remains the very important question as to how
long is “very-long-range.”” Our results do not give the
answer for the atmosphere; conceivably it could be a
few days or a few centuries. In an idealized system,
whether it be the simple convective model described
here, or a2 complicated system designed to resemble the
atmosphere as closely as possible, the answer may be
obtained by comparing pairs of numerical solutions
having nearly identical initial conditions, In the case of
the real atmosphere, if all other methods fail, we can
wait for an analogue.
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